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Executive Summary

Breakthrough cryptanalytic results on popular hash functions like MD5 and SHA-1 in 2004
and 2005 by Wang et. al motivated standardization organizations, industry, and academic
research groups alike to look into alternative hash function constructions. Now, some 8 years
later, and after intense work on the design, cryptanalysis, proofs, benchmarking of hash
functions, the NIST SHA-3 competition selected the hash function proposal Keccak as a new
standard.

In this report we provide a state of the art survey of recent developments around Keccak in
the areas of cryptanalysis and security proofs. This is our final report and it is a continuation
of the previous deliverables D.SYM.4 and D.SYM.7.
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Chapter 1

Introduction

Keccak, designed by Guido Bertoni and Joan Daemen and Michaël Peeters and Gilles Van
Assche, was by the end of 2012 selected as the winner of the SHA-3 competition, which was
formally started in 2008 with a call for submissions [NIS]. This helped form a vast body of
new literature on many aspects of hash function design and analysis. The aim of this report
is to provide a summary of all those developments that are relevant to Keccak.

After describing the design in Section 1.1, in chapter 2 we discuss security arguments
that help to get confidence in the design. This includes reductionist security arguments, i.e.
to what extent the security of the hash function can be reduced to properties of underlying
building blocks. This also includes bounds on classical attack vectors like differential attacks.

In chapter 3 we will discuss various attempts to cryptanalyze Keccak and reduced versions
of it, hence greatly extending the scope of the security analysis of the earlier chapter. This
includes zero-sum, algebraic, rebound, and rotational attack vectors. Finally, in chapter 4,
we conclude with open problems for research on Keccak.

1.1 Specifications summary

This section offers a summary of the Keccak specifications using pseudocode, sufficient
to understand its structure and building blocks1. In no way should this introductory text
be considered as a formal and reference description of Keccak. For the formal definition
of Keccak, we refer to [BDPV12]. Any instance of the Keccak sponge function fam-
ily makes use of one of the seven Keccak-f permutations, denoted Keccak-f [b], where
b ∈ {25, 50, 100, 200, 400, 800, 1600} is the width of the permutation. These Keccak-f per-
mutations are iterated constructions consisting of a sequence of almost identical rounds. The
number of rounds ” depends on the permutation width, and is given by nr = 12 + 2`, where
2` = b/25. This gives 24 rounds for Keccak-f [1600].

Keccak-f [b](A)
for i in 0 . . . nr − 1
A = Round[b](A,RC[i])

return A

1Thanks to Guido Bertoni and Joan Daemen and Michaël Peeters and Gilles Van Assche for providing this
text

3
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A Keccak-f round consists of a sequence of invertible steps each operating on the state,
organized as an array of 5×5 lanes, each of length w ∈ {1, 2, 4, 8, 16, 32, 64} (b = 25w). When
implemented on a 64-bit processor, a lane of Keccak-f [1600] can be represented as a 64-bit
CPU word.

Round[b](A,RC)
θ step
C[x] = A[x, 0]⊕A[x, 1]⊕A[x, 2]⊕A[x, 3]⊕A[x, 4], ∀x in 0 . . . 4
D[x] = C[x− 1]⊕ ROT(C[x+ 1], 1), ∀x in 0 . . . 4
A[x, y] = A[x, y]⊕D[x], ∀(x, y) in (0 . . . 4, 0 . . . 4)

ρ and π steps
B[y, 2x+ 3y] = ROT(A[x, y], r[x, y]), ∀(x, y) in (0 . . . 4, 0 . . . 4)

χ step
A[x, y] = B[x, y]⊕ ((NOTB[x+ 1, y]) ANDB[x+ 2, y]), ∀(x, y) in (0 . . . 4, 0 . . . 4)

ι step
A[0, 0] = A[0, 0]⊕ RC

return A

Here the following conventions are in use. All the operations on the indices are done
modulo 5. A denotes the complete permutation state array and A[x, y] denotes a particular
lane in that state. B[x, y], C[x] and D[x] are intermediate variables. The symbol ⊕ denotes
the bitwise exclusive OR, NOT the bitwise complement and AND the bitwise AND operation.
Finally, ROT(W, r) denotes the bitwise cyclic shift operation, moving bit at position i into
position i+ r (modulo the lane size).

The constants r[x, y] are the cyclic shift offsets and are specified in the following table.

x = 3 x = 4 x = 0 x = 1 x = 2

y = 2 25 39 3 10 43
y = 1 55 20 36 44 6
y = 0 28 27 0 1 62
y = 4 56 14 18 2 61
y = 3 21 8 41 45 15

The constants RC[i] are the round constants. The following table specifies their values in
hexadecimal notation for lane size 64. For smaller sizes they must be truncated.
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RC[ 0] 0x0000000000000001 RC[12] 0x000000008000808B
RC[ 1] 0x0000000000008082 RC[13] 0x800000000000008B
RC[ 2] 0x800000000000808A RC[14] 0x8000000000008089
RC[ 3] 0x8000000080008000 RC[15] 0x8000000000008003
RC[ 4] 0x000000000000808B RC[16] 0x8000000000008002
RC[ 5] 0x0000000080000001 RC[17] 0x8000000000000080
RC[ 6] 0x8000000080008081 RC[18] 0x000000000000800A
RC[ 7] 0x8000000000008009 RC[19] 0x800000008000000A
RC[ 8] 0x000000000000008A RC[20] 0x8000000080008081
RC[ 9] 0x0000000000000088 RC[21] 0x8000000000008080
RC[10] 0x0000000080008009 RC[22] 0x0000000080000001
RC[11] 0x000000008000000A RC[23] 0x8000000080008008

We obtain the Keccak[r, c] sponge function, with parameters capacity c and bitrate r, if
we apply the sponge construction to Keccak-f [r + c] and perform specific padding on the
message input. The following pseudocode is restricted to the case of messages that span a
whole number of bytes and where the bitrate r is a multiple of the lane size.

Keccak[r, c](M)
Padding
P = M ||0x01||0x00|| . . . ||0x00
P = P ⊕ 0x00|| . . . ||0x00||0x80

Initialization
S[x, y] = 0, ∀(x, y) in (0 . . . 4, 0 . . . 4)

Absorbing phase
for every block Pi in P
S[x, y] = S[x, y]⊕ Pi[x+ 5y], ∀(x, y) such that x+ 5y < r/w
S = Keccak-f [r + c](S)

Squeezing phase
Z = empty string
while output is requested
Z = Z||S[x, y], ∀(x, y) such that x+ 5y < r/w
S = Keccak-f [r + c](S)

return Z

Here S denotes the state as an array of lanes. The padded message P is organised as
an array of blocks Pi, themselves organized as arrays of lanes. The || operator denotes byte
string concatenation.
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Chapter 2

Proofs for Keccak

We devide the proofs for Keccak into two parts. Reductionist security arguments, and argu-
ments against classes of cryptanalytic attacks, basic differential attacks in particular. Whereas
for Keccak there is actually no reductionist security proof because it uses a fixed permutation,
Keccak is based on the Sponge construction which is proven secure in various ways assuming
the underlying permutation to be ideal.

The fact that Keccak comes with this kind of proofs should not be interpreted as it being
invulnerable against any type of cryptanalysis, However, both security reductions and provable
resistance against basic differential cryptanalysis guarantee that the hash function has no
severe structural weaknesses, and in particular that the design does not suffer weaknesses
that can be trivially exploited by cryptanalysts.

2.1 Reductionist security arguments

2.1.1 Preliminaries

We denote by Func(m,n) the set of all functions f : Zm
2 → Zn

2 . A random oracle [BR93] is a
function which provides a random output for each new query. A random m-to-n-bit function
is a function sampled uniformly at random from Func(m,n). A random primitive will also
be called “ideal”. The set of functions Func may be restricted, for instance to contain block
ciphers or permutations only.

2.1.2 Collision, Preimage, and Second Preimage Security

In the ideal model, a compressing function F (either on fixed or arbitrary input lengths) that
uses one or more underlying building blocks is viewed insecure if there exists a successful
information-theoretic adversary that has only query access to the idealized underlying prim-
itives of F . The complexity of the attack is measured by the number of queries q to the
primitive made by the adversary. In this work it is clear from the context which of the under-
lying primitives is assumed to be ideal. We consider preimage, second preimage and collision
resistance. For each of these three notions, with Advatk

F , where atk ∈ {pre, sec, col}, we denote
the maximum advantage of an adversary to break the function F under the security notion
atk. The advantage is the probability function taken over all random choices of the underlying
primitives, and the
maximum is taken over all adversaries that make at most q queries to their oracles.

7
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If a compressing function F outputs a bit string of length n, one expects to find collisions
with high probability after approximately 2n/2 queries (due to the birthday attack). Simi-
larly, (second) preimages can be found with high probability after approximately 2n queries1.
Moreover, finding second preimages is provably harder than finding collisions, and similar for
preimages (depending on the specification of F ) [RS04].

2.1.3 Indifferentiability

The indifferentiability framework introduced by Maurer et al. [MRH04] is an extension of
the classical notion of indistinguishability; it ensures that a hash function has no structural
defects. We denote the indifferentiability security of a hash function H by Advpro

H , maximized
over all distinguishers making at most q queries of maximal length K ≥ 0 message blocks to
their oracles. We refer to Coron et al. [CDMP05] for a formal definition. An indifferentiability
bound guarantees security of the hash function against specific attacks. Although recent
results by Ristenpart et al. [RSS11] show that indifferentiability does not capture all properties
of a random oracle, indifferentiability still remains the best way to rule out structural attacks
for a large class of hash function applications.

It has been demonstrated in [AMP10a,AMP10b] that

Advatk
H ≤ PratkRO + Advpro

H (2.1)

for any security notion atk, where PratkRO denotes the success probability of a generic attack
against H under atk and RO is an ideal function with the same domain and range space as
H.

Keccak:
(n, l,m) ∈ {(256, 1600, 1088), (512, 1600, 576)}
P : Zl

2 → Zl
2 permutation

f(h,M) = P (h⊕ (M‖0l−m))

Keccak(M) = h, where:

(M1, . . . ,Mk)←M‖10−|M|−2 mod m1; h0 ← iv
hi ← f(hi−1,Mi) for i = 1, . . . , k
h← chopn(hk)

Figure 2.1: iv denotes an initialization vector, h denotes state values, M denotes message
blocks.

2.1.4 Application and results for Keccak

The Keccak hash function [BDPA11] is a sponge function, but can also be considered as a
parazoa function [AMP12] or a chop-Merkle-Damg̊ard construction. The compression func-
tion f is based on a permutation Zl

2 → Zl
2. The hash function output is obtained by chopping

off l − n bits of the state2. Notice that the parameters of Keccak satisfy l = 2n + m. The
Keccak hash function design is given in Fig. 2.1.

1Kelsey and Schneier [KS05] describe a second preimage attack on the Merkle-Damg̊ard hash function that
requires at most approximately 2n−L queries, where the first preimage is of length at most 2L blocks.

2We notice that sponge function designs are more general [BDPV07], but for Keccak this description
suffices.
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The compression function of Keccak is based on one permutation, and collisions and preimages
for the compression function can be found in one query to the permutation [BCS05]. The Kec-
cak hash function is proven indifferentiable from a random oracle up to bound Θ((Kq)2/2l−m)
if the underlying permutation is assumed to be ideal [BDPV08]. Using (2.1), this indifferen-
tiability bound renders an optimal collision resistance bound for Keccak, Advcol

H = Θ(q2/2n),
as well as optimal preimage resistance Advepre

H = Θ(q/2n) and second preimage resistance
Advesec

= Θ(q/2n).

2.2 Arguments against classes of cryptanalytic attacks

The security notions and design approaches mentioned so far substantially assume the un-
derlying primitives of hash functions (such as compression functions, permutations or block
ciphers) to behave in an idealized way, where the primitive is randomly drawn from the cor-
responding class of primitives. However, any practical setting requires the primitives to be
efficiently implementable, their representation being compact. As a matter of fact, this does
not comply to the random procedure of choice assumed, since it is extremely improbable to
select a compactly implementable primitive at random. Thus, once the rule of domain exten-
sion has been proven sound assuming the idealness of the underlying primitive, the problem
of evaluating the concrete primitive with respect to real-world attacks arises.

In here, echoing [ABM+12], we choose to employ the toolbox of differential cryptanaly-
sis [BS91] to address the latter problem, particularly because this analysis approach is also
responsible for the attacks on MD5 and SHA-1 [WYY05,WY05], that are the main motivation
for the SHA-3 competition.

The security of hash functions with respect to such central requirements as (second) preim-
age and collision resistance can be reformulated in terms of the input and output differences
of the underlying primitives.

Differentials, DP, EDP. Strictly speaking, for some primitive φ mapping to n bits, we
do not want the differential probability (DP) of any non-trivial differential (∆,∇) over φ
to significantly deviate from 2−n (see [DR07] for a comprehensive statistical study of this
parameter for idealized permutations and functions). The differential (∆,∇) for primitive φ
consists of input difference ∆ and output difference ∇. Once the parameters of φ are fixed
(keys, salts, initial vectors, etc.), one speaks about the differential probability DP as the
probability for (∆,∇) to hold averaged over all inputs. The expected DP (EDP) is the DP
averaged over all sets of parameters for φ.

Differential trails, DTP, EDTP. For most practical constructions, however, also for
Keccak, it is often impossible to derive any tight (and, thus, informative) upper bounds
on DP or even EDP. That is why, to simplify the analysis, one frequently has to revert to dif-
ferential trails and their probabilities for the evaluation of designs with respect to differential
cryptanalysis [BS91, DR02]. A differential can be seen as the set of all difference propaga-
tion paths from ∆ to ∇ through intermediate differences corresponding to the iterations of
an iterative construction. Each of these paths is called a differential trail. The probability
that a differential trail holds is referred to as differential trail probability (DTP). Similarly
to differentials, the expected DTP averaged over all parameters will be denoted as EDTP.
We refer to the upper bounds on EDP and EDTP (attained or not attained) as MEDP and
MEDTP, respectively.
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Table 2.1: Maximum EDTP (MEDTP) for Keccak.
hash size rounds log2MEDTP r for r/R for r with log2MEDTP log2 MEDTP log2MEDTP

n R for R MEDTP ≈ 2−n log2MEDTP ≈ −n for R/4 for R/3 for R/2

Keccak

224 24 -296 24 1 -74 -74 -148
256 24 -296 24 1 -74 -74 -148
384 24 -296 > 24 > 1 -74 -74 -148
512 24 -296 > 24 > 1 -74 -74 -148

Bounds on DTP for Keccak. The Keccak permutation consists of 24 rounds. In [DA12]
for the upper bound on the EDTP a value of 2−32 is proven for 3 rounds, 2−74 for 6 rounds,
and 2−296 for the full 24 rounds.

A note on some limitations of the obtained results. Strictly speaking, given a bound
on the expected differential trail probability it is hard to say what it exactly implies for the
expected differential probability, since there might be strong differential effects. More, an
upper bound on the expected differential trail probability (averaged over some parameters
of the primitive) can make only a limited statement about the differential probability taken
for the fixed parameters or the maximum differential probability taken over all inputs. At
the same time, it is exactly the latter properties which are related to the real-world attack
complexities on hash functions. However, even the latter properties only allow statements
against basic differential attacks, and do not take into account more advanced techniques,
such as message modification [WYY05, WY05], condition propagation [DR06, DMR07], or
rebound attacks [MRST09,KNR10,DGPW12].



Chapter 3

Cryptanalysis

3.1 On the algebraic degree and zero-sum structures for Keccak-
f

Some of the properties that were first analyzed for Keccak were properties related to its
algebraic degree. More precisely, the existence of some structures, named zero-sums struc-
tures, was intensively studied for the inner permutation of Keccak in different research
papers [AM09,BC10a,BC10b,BCC11,DL11,BC13b]. In the next section, we will present the
notion of zero-sums and zero-sum partitions and we will show how these notions were applied
to Keccak.

3.1.1 Zero-sums and zero-sum partitions

We start by introducing the notion of a zero-sum for a vectorial function F .

Zero-sums

Definition 1 Let F be a function from Fn
2 into Fm

2 . A zero-sum for F of size K is a subset
{x1, . . . , xK} ⊂ Fn

2 of elements which sum to zero and for which the corresponding images by
F also sum to zero, i.e.,

K∑
i=1

xi =
K∑
i=1

F (xi) = 0 .

In [AM09], Aumasson and Meier searched for the existence of zero-sums for some round-
reduced versions of the permutation Keccak-f . They were able to construct zero-sums for
up to 16 rounds of the permutation with complexity 21025. The method that they used is quite
simple and elegant and is based on the fact that hash functions are constructions using no
key and thus it is possible to perform computations starting from the middle. This idea was
used for the first time by Knudsen and Rijmen [KR07] in order to construct distinguishers for
block ciphers in the known-key model. For constructing zero-sums for 16 rounds of Keccak-f
Aumasson and Meier computed that after 10 rounds of the permutation, the algebraic degree
could not exceed 210 = 1024 as the algebraic degree of the round permutation is 2. In the same
way, 6 rounds of the inverse permutation were estimated to be of degree at most 36 = 729 as
the degree of the inverse round permutation is 3. Thus by choosing a subspace V ⊂ F1600

2 of

11
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dimension d > max(1024, 729) in an intermediate state after 6 rounds and computing forwards
and backwards the authors get easily a zero-sum for 16-rounds of Keccak-f . This method
will be described in details in the sequel.

For a given function F : Fn
2 → Fm

2 , a generic method for finding zero-sums is given by
Wagner’s generalized birthday algorithm. However, for zero-sums of size k > n+m, Wagner’s
algorithm can be improved by the attack XHASH due to Bellare and Micciancio [BM97], as
this was pointed out in [AKK+10, BDPV10]. A general algorithm inspired by the XHASH
attack was described by Bertoni et al. [BDPV10] (Algorithm 2). The complexity of this
generic algorithm is equal to approximately k+ n+m evaluations of F and the resolution of
a linear system that can be done in O((n+m)3).

In [AM09], the authors seemed to suggest that the existence of a single zero-sum for a per-
mutation could imply a distinguishing property for it. In this direction, Boura and Canteaut
investigated in [BC10a] the following question: Do zero-sums exist for every permutation and
if yes, what is the minimal size of a zero-sum? They found thus that each permutation P
possesses at least one zero-sum of size 5. Furthermore this lower bound is attended for a
special class of permutations, the so-called APN permutations.

As a consequence, the existence of a zero-sum for a given function cannot be considered
as a distinguishing property. However, if the function is a permutation then an interesting
property holds: A coset of a zero-sum is still a zero-sum. This leads to a much stronger
property, named zero-sum partition.

Zero-sum partitions

Definition 2 Let P be a permutation from Fn
2 into Fn

2 . A zero-sum partition for P of size
K = 2k is a collection of 2n−k disjoint zero-sums Xi = {xi,1, . . . , xi,2k} ⊂ Fn

2 , i.e.,

2n−k⋃
i=1

Xi = Fn
2 and

2k∑
j=1

xi,j =

2k∑
j=1

P (xi,j) = 0, ∀1 ≤ i ≤ 2n−k .

The best known generic attack for finding zero-sum partitions of size k for a permutation
of Fn

2 consists in recursively applying the XHASH attack. The total complexity of this attack
is approximated by

2n − 2k + (2n)3(2n−k − 1).

A particular point of all the generic attacks for finding zero-sum partitions is that the
permutation has to be evaluated at almost all points of the subspace, since the research
method is not deterministic. For this reason, it is very interesting to study zero-sum partitions
coming from some structural property of the permutation.

3.1.2 Exploiting structural properties of a permutation

Most of the symmetric primitives have an iterative structure. We will present in this section
some methods for searching for zero-sum partitions for iterative permutations of the form

P = Rr ◦ · · · ◦R1,

where Ri’s are simple parametrized permutations, usually called round permutations. As
presented in [BC10b] there are two general methods for searching for zero-sum partitions, one
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by exploiting the algebraic degree of the permutation and of its inverse and the second one
based on properties of the diffusion part. The first method is the one introduced by Aumasson
and Meier in [AM09] and used for constructing zero-sums for the inner permutations of the
hash functions Keccak, Luffa and Hamsi.

Constructing zero-sum partitions from higher-order differentials

If F is a permutation, then every subspace V ⊂ Fn
2 of dimension (degF + 1) leads to a

zero-sum partition. This results comes from the properties of higher-order differentials as

DV F (x) =
∑
v∈V

F (x+ v) = 0, for every x ∈ Fn
2 .

The only information that ones need to know in order to use this first approach is an
upper bound for the degree of the round transformation and of its inverse.

Let P = Rr ◦ · · · ◦ R1 and t an integer 1 ≤ t ≤ r. We define the functions Fr−t et Gt,
implied in the decomposition of P :

• Fr−t: Function that consists of the (r − t) last round transformations, that is Fr−t =
Rr ◦ · · · ◦Rt+1

• Gt: Inverse function of the first t round transformations, that is Gt = R−11 ◦ · · · ◦R−1t .

The method introduced in [AM09] is described in Proposition 1 and can be visualized in
Figure 3.1.

P

Gt Fr−t

V + aXa P (Xa)

Figure 3.1: Method for constructing a zero-sum partition for an r-round permutation P .

Proposition 1 Let d1 and d2 be such that deg(Fr−t) ≤ d1 and deg(Gt) ≤ d2. Let V be any
subspace of Fn

2 of dimension d+ 1 where d = max(d1, d2), and let W denote the complement
of V , i.e., V ⊕W = Fn

2 . Then, the sets

Xa = {Gt(a+ z), z ∈ V }, a ∈W

form a zero-sum partition of Fn
2 of size 2d+1 for the r-round permutation P .

It is obvious from this proposition that in order to construct zero-sums partitions for a
given permutation, one has to estimate the degree of the iterated permutation while also the
degree of the inverse permutation after several rounds. We will see later, how this applies to
Keccak and we will present a detailed study on the evolution of the degree of Keccak-f .
Before this, we present a second method, introduced in [BC10b] for constructing zero-sum
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partitions, exploiting this time the diffusion properties. This method, that also applies to
Keccak is less efficient that the first one, however it permits in some cases to add one or
two rounds to some already constructed zero-sum partitions. Theorem 1 presents the general
method for adding two rounds to some already-known zero-sum partitions. This method can
be easily generalized for adding more than two rounds, however this generalization is skipped
in this document.

Exploiting the diffusion part

Before presenting the main theorem, we will introduce some notations given in [BC10a]. More
precisely, we will denote by Bi the parts of the state on which apply the Sboxes of the round
function. In the case of Keccak, the subspaces Bi correspond to the rows of the state,
i = 0, . . . , 320.

Theorem 1 Let d1 and d2 be such that deg(Fr−t−2) ≤ d1 and deg(Gt) ≤ d2. Let L denote
the linear part of the affine permutation A. Let V be a k-dimensional subspace Fn

2 , satisfying
both following conditions:

(i) there exists a set I ⊂ {0, . . . , nr − 1} such that

Bb :=
⊕
i∈I

Bi ⊂ V et |I| ≥
⌈
d2 + 1

n0

⌉
.

(ii) there exists a set J ⊂ {0, . . . , nr − 1} such that

Bf :=
⊕
j∈J

Bj ⊂ L(V ) et |J | ≥
⌈
d1 + 1

n0

⌉
.

Let W denote the complement of V . Then, the sets

Xa = {Gt ◦A−11 ◦ χ−1(a+ z), z ∈ V }, a ∈W,

form zero-sum partitions of Fn
2 of size 2k for the permutation r-round permutation P .

Application to Keccak

Both methods presented before were used in order to find zero-sum partitions for the inner
permutation of Keccak. Aumasson and Meier [AM09] used the first method to find zero-
sums structures for 16 rounds of Keccak-f . These results were then improved by Boura and
Canteaut by combining both methods [BC10a, BC10b]. In these papers, the authors used
more sophisticated bounds for the degree and took advantage of the diffusion part in order
to extend the results of [AM09] to 17, 18, 19 and 20 rounds of the permutation.

Extension to 17 rounds It was shown in [BC10a], that 7 rounds of the inverse permutation
of Keccak-f is at most 1369. This upper bound was a consequence of the direct application
of a result of Canteaut and Videau [CV02] that can improve the trivial bound for the degree
in the case when the values in the Walsh spectrum of the function are divisible by a high
power of 2.
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Theorem 2 [CV02] Let F be a function from Fn
2 into Fn

2 such that all values in its Walsh
spectrum are divisible by 2`, for some integer `. Then, for any G : Fn

2 → Fn
2 , we have

deg(G ◦ F ) ≤ n− `+ deg(G).

It is then mentioned in [BC10a] that the Walsh spectrum of the Sbox that is used in
Keccak-f is divisible by 23. This is the same for the inverse Sbox. As there are 320 parallel
applications of this Sbox, it is deduced that the non-linear function χ while also its inverse
χ−1 are divisible by 23·320 = 2960. If we denote by R the round function of Keccak, we get
from Theorem 2 the following bounds on the degree of 7 rounds of the inverse permutation:

deg(R−7) = deg(R−6 ◦R−1) ≤ 1600− 960 + 729 = 1369.

This permitted to extend the previous partitions obtained in [AM09] to one more round,
by adding a round to the backwards direction. The size of these partitions was 21370.

Extension to 18 rounds The above presented zero-sum partitions can be easily extended
to one more round, as shown in [BC10a], by choosing the subspace V to be the direct sum of
some subspaces generated by the rows of the state and indexed by the set I, i.e. V =

⊕
i∈I Bi.

Then as the nonlinear function χ applies independently to the rows of the state, the variables
of different rows will not be mixed up together after the application of χ. This means that
there exists a b such that χ(a + V ) = b + V . If now we set A1 = π ◦ ρ ◦ θ and A2 = ι, the
method of adding one more round to Keccak is illustrated in Figure 3.2.

Gt ◦ A−1
1 Fr−t−1 ◦ A2χ

V + a V + b

Figure 3.2: Method for extending a zero-sum partition to one more round

In [BC10b] the authors set V =
⊕

i∈I Bi with |I| = 274 and get zero-sum partitions for
18 rounds of the permutation.

Extension to 19 and 20 rounds By using Theorem 1 the authors in [BC10b] found zero-
sum partitions for 19 and 20 rounds of Keccak-f of size 21458 and 21595. The details of the
method are skipped.

3.1.3 Improving the bounds on the algebraic degree for several rounds of
Keccak-f

The results on Keccak were further improved in 2011 due to a better estimation of the
evolution of the degree after several rounds of the internal permutation. More precisely,
Boura, Canteaut and De Cannière established a new bound on the evolution of the algebraic
degree of iterated permutations based on the SPN construction [BCC11]. Before presenting
the main result, we introduce the following definitions and notations of [BCC11].



16 ECRYPT II — European NoE in Cryptology II

Let F = (f1, . . . , fm) be a function of Fn
2 into Fm

2 . If I ⊂ {1, . . . ,m}, we denote by F I the
Boolean function of n variables corresponding to the product of the coordinates of F indexed
by I :

F I =
∏
i∈I

fi.

Definition 3 Let F = (f1, . . . , fm) be a function of Fn
2 into Fm

2 . Denote by δk(F ), 1 ≤ k ≤ m
the maximum degree of the product of k distinct coordinates of F .

δk(F ) = max
I⊂{0,1,...,m},|I|=k

deg(F I).

By using the above notation, the authors proved the following bound that improves in most
of the cases the trivial bound when the number of rounds gets high.

Theorem 3 Let F be a function of Fn
2 into Fn

2 corresponding to the concatenation of m
smaller balanced Sboxes, S1, . . . , Sm, defined over Fn0

2 . Let δi(S) = max
1≤j≤m

δi(Sj). Then, for

any function G of Fn
2 into F`

2, we have that

deg(G ◦ F ) ≤ n− n− deg(G)

γ
, (3.1)

where

γ = max
1≤i≤n0−1

n0 − i
n0 − δi(S)

.

In particular, we deduce that

deg(G ◦ F ) ≤ n− n− deg(G)

n0 − 1
.

Moreover, if n0 ≥ 3 and all Sboxes are of degree at most n0 − 2, we have

deg(G ◦ F ) ≤ n− n− deg(G)

n0 − 2
. (3.2)

Let now apply Theorem 3 to the round permutation of Keccak-f that we denote by R.
As n0 = 5 ≥ 3 and the degree of the non-linear permutation χ is 2 we have according to the
bound (3.2),

deg(G ◦R) = deg(G ◦ χ) ≤ 1600− 1600− deg(G)

3
, (3.3)

for every function G. In the same way, as deg(χ−1) = 3, we have for every function G,

deg(G ◦R−1) = deg((G ◦ L−1) ◦ χ−1) ≤ 1600− 1600− deg(G)

3
, (3.4)

where L = π ◦ ρ ◦ θ.
In a paper that appeared later in 2011 [DL11], Duan and Lai observed that if we multiply

two by two all the coordinated of χ−1, the degree of the product is at most 3. By following
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the above notation this means that δ2(R
−1) = δ2(χ

−1) = 3. By using this remark we compute
the quantity γ of the Equation (3.1) for the function R−1. Let

γi =
n0 − i

n0 − δi(χ−1)
.

We have that

γ1(χ
−1) = 2, γ2(χ

−1) = 1.5, γ3(χ
−1) = 2, et γ4(χ

−1) = 1.

Thus,
γ = max

1≤i≤4
γi = 2

and the Equation (3.4) gives now

deg(G ◦R−1) ≤ 1600− 1600− deg(G)

2
. (3.5)

Using the bounds (3.3) and (3.5), Table 3.1, containing the bounds on the degree of
Keccak-f and its inverse, can be established. For the first rounds the results are obtained
from the trivial bound while the results in bold are due to the new bound. For the inverse
permutation, we present in the second column the results of the bound (3.4) and in the third
column those of the bound (3.5).

forwards backwards

# rounds bound deg(Rr) # rounds bound deg(R−r) bound deg(R−r) [DL11]

1 2 1 3 3
2 4 2 9 9
3 8 3 27 27
4 16 4 81 81
5 32 5 243 243
6 64 6 729 729
7 128 7 1309 1164
8 256 8 1503 1382
9 512 9 1567 1491
10 1024 10 1589 1545
11 1408 11 1596 1572
12 1536 12 1598 1586
13 1578 13 1599 1593
14 1592 14 1599 1596
15 1597 15 1599 1598
16 1599 16 1599 1599

Table 3.1: Upper bounds for the degree of several rounds of Keccak-f and its inverse

These estimations for the degree of Keccak-f permitted to find zero-sum partitions for
the entire permutation Keccak-f . The size of these partitions was equal to 21575.
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3.1.4 Explication of the observation of Duan and Lai in [DL11]

In [BC13b] Boura and Canteaut showed that the observation of Duan and Lai was not due
to a random behavior of the function, but was caused by the fact that the function χ used in
Keccak is of low algebraic degree. More precisely, the following result was proved.

Theorem 4 Let F be a permutation of Fn
2 . Then, for any k and ` we have that

δ`(F
−1) < n− k if and only if δk(F ) < n− `. (3.6)

This theorem explains the comportment observed on Keccak. Indeed, as δ1(χ) =
deg(χ) = 2, we get from Theorem 4 that δ2(χ

−1) < 4.

3.1.5 Conclusion

The existence of zero-sum partitions does not threaten the security of the hash function. It
is still an open question if these structures can be tranformed in some way to some form of
attack, as a collision or a preimage attack. One of the reasons for which these structures
have been so extensively studied for Keccak was the announcement by the Keccak team
of the so-called “hermetic sponge strategy” that stated that no distinguisher should exist for
the inner permutation. Probably the most interesting conclusion that we can keep from the
research of such structures for Keccak is all the new results related on its algebraic degree.
Keccak-f was an excellent example for studying the evolution of the algebraic degree of
iterated permutations and provided the community with many new results in this direction.

3.2 On the Column Parity Kernel of Keccak-f

The linear transformation θ adds to each internal bit, the parity of two columns. If the
parity of all the columns is even, θ acts as the indentity. As the authors of Keccak define
in [BDPV12], the set of the states with all their columns summing to 0 is called the column
parity kernel (CP kernel). This property applies to the values as well as to the differences.

The diffusion produced by θ is in consequence controlled while the attacker is able to stay
in states that belong to the CP kernel. This property can for instance help the construction
of low weight differential paths. Several analysis have exploited this property.

3.2.1 First (practical) results on reduced rounds

In [NPRM11] a distinguisher is presented on the recommended hash functions bKeccak[1088,512]c256
and bKeccak[1152,448]c224 when reduced to 4 rounds. Also a second preimage on two rounds,
a collision on 2 rounds and a near collision on 3 rounds are described. These are the first prac-
tical results of cryptanalysis of the Keccak hash function setting where all the parameters
but the number of rounds remain unchanged.

The analysis methods are based on different techniques, and propose a deep study of
reduced-round Keccak and its resistance to attacks on the hash function scenario, which are
stronger results than compression function ones. Though the number of rounds might seem
quite reduced, the analysis are already quite technical.
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Building double kernels. The paper first describes an efficient way of searching low weight
differential paths. This method was used to find the differential paths that are applied for
the distinguisher on 4 rounds, the collision on 2 rounds and the near collision on 3 rounds.
For the distinguisher the concept of free bits as was defined in [KMNP10] is used in addition.

As previously stated, a state-difference is a kernel if it is invariant to one of the functions
used in its permutation, θ, e.g. in each column we have a difference in zero or in an even
number of bits. If we have a column where we have a difference in an odd number of bits,
θ will spread this difference to 10 bits. Thus, for a low weight differential path we would
like the state-differences to stay a kernel as long as possible. The designers of Keccak show
in [BDPV12] that it is not possible to construct low weight differentials that are a kernel for
three states in a row, however two states in a row is possible, though they are not given in
the documentations. We will denote the two kernels in a row a double kernel.

For the search of the path, the following special property of the non-linear function χ
is used: every 1-bit difference in a row constructed before χ will produce the same 1-bit
difference after χ with probability 2−2. Thus such a 1-bit difference will be invariant to the
only non-linear part with probability 2−2. If in addition we have a kernel, i.e. the difference
is invariant to θ, we can concentrate on the remaining functions of the permutation ρ and π
to find a double kernel.

For finding a double kernel the following procedure, represented in figure 3.2.1 is used. At
first, the number of slices that will contain the difference in the first state is determined. Next,
a bit is chosen in slice z = 0. Then, the following algorithm will be repeated for all bits in slice
z = 0: From the chosen bit, the position after one application of ρ and π is computed. For
this new bit position all bits in the same column are checked and their position is computed
backwards by applying π−1 and ρ−1. Next all possible bits in the same column are checked
and their position after applying ρ and π are computed. This procedure continues until the
wanted number of slices is affected. A double kernel is found if after the last step we are again
at the original slice at the right column.

Collisions and distinguishers. This basic method allows to find all double kernels which
have k active slices in each of the two kernels with a complexity of 25 ∗ 42k−1. Every solution
will be found 2 ∗ k times, since every point of the first kernel can be a starting point.

By this method we can find very fast all possible differential paths that are a kernel for
two states in a row and have low hamming weight. This method was used to find suitable
differential paths for the analysis. Once the best path was found, the conditional differential
as described in [KMNP10] was applied for being able of detecting a bias on the output after
4 rounds, and collisions and near-collisions on 2 and 3 rounds could be built with very low
complexity.

Preimage. In this paper also the first practical preimage attack is provided. Its complexity
is about 233 in time and 229 in memory for two rounds. A meet-in-the-middle attack is
performed. The issue is to find the coherent values in the middle, that are associated by the
operations χ and θ. For this, the authors propose to start by finding the bits that verify the
relations for a few slices. The idea is, for example, to consider first groups of three slices
where we guess all the involved bits, and next we can do a sieving by just keeping the guessed
ones that produce by χ and θ the values of the 5 × 2 = 10 known bits from the backwards
computation of the group of three slices. This is possible as for computing the output of θ in
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Figure 3.3: Double kernel on three slices

a specific slice, we need to know this same slice and the previous one in the input state. The
key of this method is to find gradually partial solutions in parallel for a number of slices that
gets bigger until reaching the solutions for the 64 slices by having merged the partial previous
solutions.

Two methods can help in an efficient implementation of the attack. Let us assume we
want to merge the block from slice i to j with the block from slice j + 1 to k. We first
precompute a list containing all solutions for merging slice j and slice j + 1. We have 10 bits
in each of the two slices, 1 repeated bit and 5 conditions from the output, thus we have in
total 214 solutions that we sort by the 210 values in slice j. The cost of building this list is
negligible in comparison to the remaining time complexities. Next, for each solution in the
first block (i to j) we compute the values of the bits that will repeat in the second block.
We will sort the solution in this first block by the value of the slice in j and the values of
the repeated bits. We do the same thing for the second block (j + 1 to k) and sort it by the
value of slice j + 1 and the values of the repeated bits. Now we can easily merge the two
lists using the precomputed list of matches from slices j to j + 1. More details can be found
in [NPRM11]
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Pbw Pin Pfw

inbound
outbound outbound

Figure 3.4: A schematic view of the rebound attack. The attack consists of an inbound and
two outbound phases.

3.3 Rebound, algebraic and symmetry properties of the per-
mutation and hash function

3.3.1 Differential approaches

In here, we briefly summarize the current known results with differential-style attacks vectors.
Note that the terms characteristic, path, or trail are often used synonymously in various
publications.

The rebound attack consists of two phases, called inbound and outbound phase, as shown
in Figure 3.4. According to these phases, the compression function, internal block cipher or
permutation of a hash function is split into three sub-parts. Let P be a permutation, such
as Keccak-f , then we get W = Wfw ◦Win ◦Wbw. Hence, the part of the inbound phase is
placed in the middle of the cipher and the two parts of the outbound phase are placed next
to the inbound part. In the outbound phase, two high-probability (truncated) differential
trails are constructed, which are then connected in the inbound phase. Similar to message
modification, the freedom in the message, key-inputs or (internal) state variables is used to
efficiently fulfill many conditions of a differential trail.

In case of the results on Keccak by Duc et al. [DGPW12], the idea is to find differential
trials for the outbound parts that allow to formulate a differential distinguisher for which the
computational complexity of a generic approach is higher. As the diffusion in the backwards
direction is much stronger in Keccak, the trails are asymmetric in the sense that the forward
trail is much longer than the backward trail. The end result is a differential distinguisher
with complexity 2491.47 units, whereas a generic approach to produce the same distinguishing
property is shown to need more than an equivalent of 21057.6 units.

In [DDS12a] Dinur et al. present an combined differential/algebraic approach to practi-
cally produce collisions for 4 rounds of the Keccak-224 and Keccak-256 hash function. Also,
this is extended to practical 5-round near-collisions. Its main ingredients are a “target differ-
ence algorithm” that bypasses the first round for a sufficiently large set of messages, and a
high-probability differential characteristic for 2 or 3 rounds.

3.3.2 Symmetry and rotational properties

Two recent papers independently describe different approaches using a very related property
of Keccak. On of the properties of Keccak is that all operations except constant addition
are invariant with respect to rotation. This is exploited for a distinguisher for up to 5 rounds,
and a preimage attack on up to 4 rounds by Morawiecki et al. [MPS12]. A high probability
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rotational trail is found for 3 rounds. This allows the authors to describe a preimage attack
that is claimed to be up to 64 times faster than brute force, as 64 preimage candidates (64 is
the maximal length of a lane in Keccak) can be testing in a single operation.

Dinur et al. [DDS12b] exploit a similar yet more generic property in a different way and
obtain improved collision attacks, which also borrow some techniques like the target difference
algorithm from [DDS12a]. New results include practical 3-round collisions for Keccak-384
and Keccak-512, as well as first theoretical collision attacks on 4-round Keccak-384 with
an complexity of 2147. Also, the first 5-round collision attack on Keccak-256 is given, with
an estimated time complexity between 2108 and 2115 and a memory complexity of about 292.



Chapter 4

Conclusions

We believe Keccak to be an excellent alternative to the SHA-2 family of hash functions.
Instead of more concluding remarks we give a list of open research problems.

We start with problems related to security proofs and arguments for Keccak.

• Better (tighter) bounds on the upper bound on the expected differential trail probability
(EDTP). Only the results for 3 rounds are tight.

• Informative statements on the expected differential probability (EDP) rather than the
EDTP, as these are more meaningful statements against real-world differential attacks.

• Bounds on the effectiveness of other attacks than differential attacks, e.g. those exploit-
ing symmetry properties [DDS12c].

• Verification of proofs related to Keccak, especially on some recently proposed modes
of use. In particular we point out the keyed spoinge construction [BDPV11].

Finally we give a list of open research problems related to the cryptanalysis of Keccak
that might be interesting for reaching either better attack complexities for reduced-round
version already attacked, or convincing results on a higher number of rounds as before.

• Study properties and behavior of the inverse of θ (a non intuitive and complex trans-
formation).

• For the meet-in-the-middle and biclique [BKR11, KRS12] attack vector, overcome the
challenge of matching at the large internal state.

• Find high probability differential characteristics for a higher number of rounds

• Investigate the extent the combination of condition propagation techniques and search
strategies from SAT solvers that have been pioneered for the case of SHA-1 [DR06]
and recently been applied to Hamsi (see [BC13a] and [Ku12, Section 4.4], can improve
collision and preimage attacks for Keccak.

Work on various aspects of Keccak will very likely continue. This report will not be
updated, instead we refer to the online resource “SHA-3 Zoo” [ECR13] that is likely to stay
up to date with the ongoing developments around the security of Keccak.

23
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