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Abstract. In this paper, we reveal a fundamental property of block
ciphers: There can exist linear approximations such that their biases ε
are deterministically invariant under key difference. This behaviour is
highly unlikely to occur in idealized ciphers but persists, for instance, in
5-round AES. Interestingly, the property of key difference invariant bias
is independent of the bias value ε itself and only depends on the form of
linear characteristics comprising the linear approximation in question as
well as on the key schedule of the cipher.

We propose a statistical distinguisher for this property and turn it into
an key recovery. As an illustration, we apply our novel cryptanalytic
technique to mount related-key attacks on two recent block ciphers —
LBlock and TWINE. In these cases, we break 2 and 3 more rounds,
respectively, than the best previous attacks.
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1 Introduction

1.1 Linear cryptanalysis, linear approximations, and bias

Linear cryptanalysis is a central and indispensable attack on block ciphers. Hav-
ing been proposed as early as in 1992 [23–25], it forms an established research
field within symmetric-key cryptology. Since then, many interesting results have
been obtained in the area, among others including correlation matrices by Dae-
men et al. [8], multiple linear cryptanalysis by Kaliski and Robshaw [15], linear
hull effect by Nyberg [29], multidimensional cryptanalysis by Hermelin et al. [13],
comprehensive bounds on linear properties by Keliher and Sui [18], as well as
success probability estimations by Selçuk [35].

The basis of linear cryptanalysis is a linear approximation of a function f .
If the linear approximation holds with probability 1/2 + ε, ε is called its bias.
A linear approximation can comprise numerous linear characteristics θ, each
contributing their linear characteristic bias εθ to the linear approximation bias ε.
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There are essentially two standard approaches to deal with the key-dependency
of these biases: they are either averaged over all keys or evaluated for a fixed
key. Both cases have been studied in great detail and these approaches have
turned out to be very fruitful: While the average behaviour of the bias is vital
to the foundations of linear cryptanalysis and the demonstration of the linear
hull effect, Murphy has demonstrated [27] that there can be keys for which the
linear distinguisher might not apply. The latter observation is more inline with
the fixed-key correlation-matrix approach, which also, among others, has lead
to zero-correlation attacks by Bogdanov et al. [3–5] and improved linear attacks
on PRESENT by Cho [6].

Apart from the average case and the fixed-key case, recently, Abdelraheem
et al. [1] have managed to compute the distribution of linear characteristic bias
for several interesting examples. Moreover, there has been quite some interest
towards deducing key information from the value of the bias [7,28,30]. Kim [19]
studies the combined related-key linear-differential attacks on block ciphers. In-
terestingly, a linear-hull version of Matsui’s Algorithm 1 by Röck and Nyberg [32]
uses the fact that, in some ciphers, the linear characteristic biases εθ are the same
for different keys.

At the same time, much less is known about the even more fundamental
question of how the bias ε of the entire linear approximation behaves under a
change of key. This is not least due to the fact that the entire linear hull is
notoriously difficult to analyze for the immense number of linear characteristics
θ comprising it. In this paper, we tackle this problem and reveal a property for
many block ciphers, namely, that the bias ε of a linear approximation can be
actually invariant under the modification of the key.

1.2 Our contributions

The contributions of this paper are as follows.

Bias invariant under key difference in iterative block ciphers. We inves-
tigate the bias of a linear approximation in key-alternating ciphers (iterative SPN
ciphers with XOR addition of subkeys) under a change of the key. By looking at
the composition of the fixed-key linear hull from individual characteristics, we
derive a sufficient condition on the keys and linear approximations such that the
bias remains unaffected by a change of key. The class of key-alternating ciphers
is already broad enough to include AES, most of the other SPN ciphers, and
some Feistel ciphers. After recalling some background on linear cryptanalysis in
Section 2, we describe these findings in Section 3.

An instructive example with AES. With our technique, the key difference
invariant bias property is easy to construct over (a part of) susceptible ciphers
since it mainly depends on the differential diffusion in the key schedule and on
the linear diffusion in the data transform of a cipher. We use AES to show how
the property can be derived. Namely, we demonstrate a key difference invariant
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bias property holding deterministically over 5 rounds of the original AES-256.
This serves as a pedagogical illustration. See Section 3.3.

Statistical distinguisher and generic key recovery. The probability to
have the key difference invariant bias property in an idealized block cipher with

block size n, is about 1√
2π

2
3−n
2 . This forms the basis for a statistical distinguisher

that can be used for key recovery. Here, we use the fact that the key difference
invariant bias property is actually truncated, i.e., there are many linear approx-
imations with key difference invariant bias in most susceptible ciphers. In our
distinguisher, for two keys, we compute the sample biases of a set of approxima-
tions with this property (using the part of the plaintext-ciphertext pairs available
to the adversary) and test their collective proximity. We demonstrate that it is
possible to efficiently distinguish this from an idealized cipher, under some basic
independency assumptions. The distinguisher can be used for hash functions and
block ciphers. In the related-key setting, we propose a key recovery procedure
for block ciphers which is similar to Matsui’s Algorithm 2. These techniques are
given in Section 4.

Applications to block ciphers LBlock and TWINE. As an illustration,
we apply our new cryptanalytic technique of key difference invariant bias to the
recently proposed block ciphers LBlock [39] and TWINE [37] . LBlock was de-
signed by Wu et al. and presented in ACNS 2011. Its state and key sizes are
64 and 80 bits respectively. LBlock has received the attention of many cryp-
tographers and various attacks have been published so far on some reduced
versions [16, 20–22, 26, 33, 34]. The best attack breaks 22 rounds of the cipher.
TWINE is a block cipher proposed in SAC 2012 by Suzaki et al. that is oper-
ating on a 64-bit state that is parameterized by keys of length 80 or 128 bits.
The total number of rounds is 36. The best known attack on TWINE-128, is an
impossible differential attack given in [37], that breaks 24 rounds of the cipher.

We identify key difference invariant bias properties over 16 rounds of LBlock
and 17 rounds of TWINE-128. This allows us to attack 24-round LBlock and
27-round TWINE-128 in the classical related-key model with differences in the
user-supplied master keys. Thus, our attacks improve upon the state-of-the-art
cryptanalysis for both LBlock and TWINE by breaking 2 and 3 more rounds,
respectively, than the best previous attacks. Our cryptanalysis is provided in
Sections 5 and Section 6.

2 Preliminaries

2.1 Key-alternating ciphers

A block cipher operating on n-bit blocks with a k-bit key can be seen as a
subset of cardinality 2k of the set of all 2n! permutations over the space of
n-bit strings. In an idealized block cipher, this subset is randomly chosen. In
all practical settings, however, one is concerned with efficiently implementable
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block ciphers. So all block ciphers used in practice contain at their core the
iterative application of r similar invertible transformations (called rounds). Key-
alternating block ciphers form a special but important subset of the modern block
ciphers (see Figure 1):

Definition 1 (Key-alternating block cipher [9]). Let each round i, 1 ≤
i ≤ r, of a block cipher have its own n-bit subkey ki. This block cipher is key-
alternating, if the key material in round i is introduced by XORing the subkey ki
to the state at the end of the round. Additionally, the subkey k0 is XORed with
the plaintext before the first round.

The r+1 round subkeys k0, k1, . . . , kr−1, kr build the expanded key K (of length
n(r+1) bits) which is derived from the user-supplied key κ using a key-schedule
algorithm ϕ. Numerous popular and widely used block ciphers belong to the
class of key-alternating block ciphers. Among others, almost all SPNs (including
AES) and some Feistel ciphers are key-alternating [11].

plaintext

x

ciphertext

y

key schedule, ϕ : κ !→ K = (k0, k1, . . . , kr)
k0 k1 k2 kr−1 kr

round 1 round 2 round r. . .

κ

Fig. 1. Key-alternating cipher

2.2 Linear approximations and bias

We briefly recall the concepts of linear approximations and bias. We denote the
scalar product of binary vectors by atx =

⊕n
i=1 aixi. Linear cryptanalysis is

based on linear approximations determined by input mask a and output mask
b. A linear approximation (a, b) of a vectorial function f has a bias defined by

εfa,b = Pr
x
{btf(x)⊕ atx} − 1/2

to which we also refer simply as ε if its assignment to function and linear ap-
proximation is clear from the context. We call a linear approximation trivial if
both a and b are zero. Otherwise, with both a 6= 0 and b 6= 0, it is non-trivial.

2.3 Linear characteristics and linear hulls

A linear approximation (a, b) of an iterative block cipher (e.g. a key-alternating
block cipher of Definition 1) is called a linear hull in [29]. The linear hull con-
tains all possible sequences of the linear approximations over individual rounds,
with input mask a and output mask b. These sequences are called linear char-
acteristics which we denote by θ. Now we recall the relations between the bias
of a linear characteristic and the bias of the entire linear hull it belongs to, for
key-alternating block ciphers.
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Given a linear hull (a, b), a linear characteristic θ is the concatenation of an
input mask a = θ0 before the first round, an output mask b = θr after the last
round, and r − 1 intermediate masks θi between rounds i− 1 and i:

θ = (θ0, θ1, . . . , θr−1, θr). (1)

Thus, each linear characteristic consists of n(r + 1) bits (cf. the length of the
expanded key K). The bias εθ of the linear characteristic θ is defined as the
scaled product of the individual biases εθi−1,θi over each round:

εθ = 2r−1
r∏
i=1

εθi−1,θi .

In a key-alternating cipher, only the sign of εθ depends on the key value,
while the absolute bias value |εθ| remains exactly the same for all keys. As a
reference point, we denote by dθ ∈ {0, 1} the sign of the linear characteristic
bias with expanded key K = 0:

εθ[0] = (−1)dθ |εθ|.

Now we formulate the following central proposition that deterministically
connects the linear approximation bias with the individual linear characteristic
biases through a fixed key value:

Proposition 1 ([9, Subsection 7.9.2]). For a key-alternating block cipher,
the bias ε of a non-trivial linear hull (a, b) is

ε =
∑

θ:θ0=a,θr=b

(−1)dθ+θ
tK |εθ|.

We will be relying on Proposition 1 in the next section to determine when ε is
invariant under a change of key.

3 Towards bias invariant under key difference

For a non-trivial linear hull (a, b) of a block cipher, let ε and ε′ be two biases
under two distinct keys κ and κ′, respectively. Now we consider when ε = ε′

with κ 6= κ′, that is, when the bias is invariant under a change of key.

3.1 Key difference invariant bias in key-alternating ciphers

In a key-alternating block cipher, let K and K ′ be the expanded keys corre-
sponding to two user-supplied keys κ and κ′, K = ϕ(κ) and K ′ = ϕ(κ′) for
key schedule ϕ as in Section 2, such that K ′ = K ⊕ ∆ where the difference ∆
describes a connection between K and K ′. We will now derive a condition on ∆
and θ such that the value of linear approximation bias ε = ε′ is unaffected by
the key change κ 6= κ′.
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In a key-alternating cipher, the bias for an expanded key can be computed
due to Proposition 1. That is:

ε =
∑

θ:θ0=a,θr=b

(−1)dθ+θ
tK |εθ| and ε′ =

∑
θ:θ0=a,θr=b

(−1)dθ+θ
tK′ |εθ|. (2)

We want to attain the equality ε = ε′, so we study when both sides of (2)
are equal: One can observe that the only part that is different are the signs of
the individual linear characteristic biases. Therefore, the equation will hold if all
the signs are equal, that is, if the following is satisfied for each θ:

dθ + θtK = dθ + θtK ′. (3)

Since dθ is the same, (3) holds if and only if θt(K ⊕K ′) = 0. Recalling that we
denote K ⊕K ′ by ∆, we have the following statement:

Theorem 1 (Key difference invariant bias for key-alternating ciphers).
Let (a, b) be a non-trivial linear hull of a key-alternating block cipher. Its biases
ε for expanded key K and ε′ for expanded key K ′ with K = K ′⊕∆ have exactly
equal values ε = ε′, if θt∆ = 0 for each linear characteristic θ of the linear hull
(a, b) with εθ 6= 0.

Theorem 1 yields a sufficient condition on the relation between the masks of
linear characteristics and the expanded key difference for the key difference in-
variant bias property to hold. We will deal with this in the next subsection.

3.2 Sufficient condition for key difference invariant bias

For a fixed pair of keys K and K ′, the difference ∆ connecting them is also
constant. At the same time, the linear masks θ will be different for each linear
characteristic in the given linear hull (a, b). Thus, ∆ can be seen as a linear mask
itself on θ that chooses certain positions in characteristics θ, cf. (1).

In a linear characteristic θ, we address each of the n(r + 1) bits by θ(j),
j = 1, . . . , n(r + 1). We focus on bit positions θ(j) in linear characteristics θ
such that θ(j) = 0 for all θ with εθ 6= 0. We call such positions zero positions.
Otherwise, a position is called a nonzero position.

Now we are ready to formulate a more explicit sufficient condition for deter-
ministically keeping θt∆ = 0:

Condition 1 (Sufficient condition for key difference invariant bias) For
a fixed non-trivial linear approximation (a, b) of a key-alternating block cipher,
the relation between a pair of the user-supplied keys κ and κ′ is such that the
expanded key difference ∆ = K ⊕K ′ chooses an arbitrary number of zero posi-
tions and no nonzero positions in the linear characteristics θ of the linear hull,
with εθ 6= 0.

Once Condition 1 is fulfilled, Theorem 1 becomes applicable with θt∆ = 0 and
yields ε = ε′.

In the next subsection, for instructive and pedagogical purposes, we show one
example of key difference invariant bias property using Condition 1 with AES.
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3.3 The instructive example of AES

Here we provide an illustration of the key difference invariant bias property
for AES. The goal of this section is mainly pedagogical and we simply aim
to show how such a property can be derived in practice. We demonstrate a
key difference invariant bias property for reduced-round AES-256. We provide
an example where Condition 1 is satisfied, which in turn makes Theorem 1
applicable.

For AES-256, let the two user-supplied 32-byte keys be connected by

κ⊕ κ′ =


0 0 0 0 0 0 δ 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 (4)

with the first byte δ 6= 0 of the 7-th column being the only non-zero byte.
Furthermore, let the (truncated) linear approximation be defined by the 16-byte
input/output masks:

a =

a 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 and b =

b 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0.

 (5)

The masks define a linear hull for any non-zero byte values a and b. We show
that the key difference (4) and the linear hulls (5) result in the key difference
invariant bias property for 5 rounds of AES-256.

The AES data transform diffuses a single-byte input mask to the full state
only after two rounds. Analogously, a single-byte output mask applies to the
full state only after three rounds of backward computations. This fact makes
Condition 1 applicable to AES. The byte positions involved into the propagation
of linear patterns over 5 rounds of AES with a and b above as input/output masks
are shown as in Figure 2. Correspondingly, byte positions not involved are
depicted as . Since AddRoundKey is addition with constant and MixColumns is
an affine operation, one can exchange their order under the suitable modification
of the subkey value. In this case, ShiftRows is followed directly by the modified
AddRoundKey (AK’) which is the case in the last round of Figure 2.

We track the propagation of the difference in the user-supplied key to the
expanded key difference which is shown as in Figure 2. κ⊕ κ′ specified above
satisfies Condition 1. In Figure 2, all non-zero bytes of ∆ are only concentrated
in impossible positions of θ and do not interfere with .
Thus, ε = ε′ is fulfilled with probability 1 and the key difference invariant bias
property holds deterministically.

3.4 Key difference invariant bias and idealized cipher

In random block ciphers, the bias ε under a fixed key is the bias for a fixed
randomly drawn permutation. Using [10, Theorem 4.7], one can demostrate that
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Expanded key difference ∆ Linear characteristics θ

KS

KS

= non-active bytes in ∆ and θ

= nonzero bytes in characteristics θ

= nonzero bytes in key difference ∆

Fig. 2. Key difference invariant bias for 5 rounds of AES-256

the probability for the biases with two different keys to be exactly equal is

Pr{ε = ε′|κ 6= κ′} ≈ 1√
2π

2
3−n
2 for block sizes n ≥ 5. Thus, the key difference

invariant property for idealized block ciphers is a rare event, which yields a
distinguisher for susceptible ciphers outlined in the next section.

4 Statistical distinguisher and key recovery with key
difference invariant bias

In this section, we present the statistical distinguisher based on the key differ-
ence invariant bias for an n-bit block cipher, followed by a generic key recovery
procedure.

4.1 Distinguisher

In the distinguisher, our aim is to tell if we deal with the target cipher featur-
ing the property or an idealized cipher. The setup for the statistical test is as
follows. Suppose that we are given N plaintext-ciphertext pairs and λ linear ap-
proximations under a pair of expanded keys (K,K ′) connected by ∆ in the way
described in Condition 1. Then, for each one of these linear approximations we
compute and store in counters Si and S′i, 1 ≤ i ≤ λ, which account for the num-
ber of times these approximations are satisfied for K and K ′ with the N texts.

The counters Si and S′i suggest empirical biases ε̂i = Si
N −

1
2 and ε̂′i =

S′i
N −

1
2

respectively. We evaluate consequently the following statistic s:
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s =

λ∑
i=1

[(
Si
N
− 1

2

)
−
(
S′i
N
− 1

2

)]2
.

We expect the statistic s to be lower for the target cipher, featuring the
key difference invariant bias property, than for a random cipher. As we aim to
perform key-recovery with this test, we will derive the distribution of this statistic
for the right key guess (assuming the target structure) and for the wrong key
guess (assuming a random cipher).

Right key guess. The empirical bias value ε̂i for the i-th linear approximation
approximately follows the normal distribution with the exact value of bias εi as
mean and variance 1/4N with good precision (cf., e.g., [14, 35]) for sufficiently
large N :

ε̂i ∼ N (εi, 1/4N).

In this case, the following proposition holds:

Proposition 2 (Distribution of statistic s for the right key). Consider
λ nontrivial linear approximations for a block cipher under a pair of expanded
keys (K,K ′) connected by ∆ conforming to Condition 1. If N is the number
of known plaintext-ciphertext pairs, Si and S′i are the numbers of times such a
linear approximation is fulfilled for K and K ′, respectively, i ∈ {1, . . . , λ}, and
λ is high enough, then, assuming the counters Si and S′i are all independent, the
following approximate distribution holds for sufficiently large N and n:

s ∼ N
(
λ

2N
,
λ

2N2

)
.

Proof. See the full version of this paper [2].

Wrong key guess. In this case, we base upon the hypothesis that for a wrong
key, we deal with a random cipher consisting of permutations drawn at random.
Then, each of the values ε̂i can be approximated by a normal distribution with
mean εi and variance 1/4N for sufficiently large N :

ε̂i ∼ N (εi, 1/4N) with εi ∼ N (0, 1/2n+2),

where εi is the exact value of the bias which is itself distributed over n-bit
random permutations for n ≥ 5 [10,31].

Then we have then the following proposition for the distribution of the statis-
tic s:

Proposition 3 (Distribution of statistic s for the wrong key). Consider
λ nontrivial linear approximations for two randomly drawn permutations. If
N is the number of known plaintext-ciphertext pairs, Si and S′i are the num-
bers of times a linear approximation is fulfilled for these two permutations,
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i ∈ {1, . . . , λ}, and λ is high enough, then, assuming the independency of all
Si and S′i, the following approximate distribution holds for sufficiently large N
and n:

s ∼ N
(
λ

2N
+

λ

2n+1
,
λ

2N2
+

λ

22n+1
+

λ

N2n

)
.

Proof. See the full version of this paper [2].

Data complexity of distinguisher. In the two above cases, we have seen that
the statistic s will follow, depending on if we deal with the right or the wrong
key, two different normal distributions. In the first case, it follows the normal
distribution with mean µ0 = λ

2N and variance σ2
0 = λ

2N2 , while in the second

case it follows the normal distribution with mean µ1 = λ
2N + λ

2n+1 and variance

σ2
1 = λ

2N2 + λ
22n+1 + λ

N2n . It has to be decided if the obtained statistic s is from
N (µ0, σ

2
0) or from N (µ1, σ

2
1). To do that, we perform a test that compares the

statistic s to a threshold value τ . This test says that s belongs to N (µ0, σ
2
0) if

s ≤ τ and that s belongs to N (µ1, σ
2
1), otherwise.

As in any statistical test, one has to deal with two types of error probabilities
here. The first one – denoted by α0 – is the probability to reject the right key,
whereas the second one – denoted by α1 – is the probability to accept a wrong
key. The decision threshold used is τ = µ0 + σ0q1−α0

= µ1 − σ1q1−α1
, where

q1−α1 and q1−α0 are the quantiles of the standard normal distribution N (0, 1).
This simple test is visualized in Figure 3.

wrong guessright guess

µ0
µ1

α1 α0

τ

Fig. 3. Statistical test for key difference invariant bias in key recovery

It is well known [12] that in order for such a test to have error probabilities
of at most α0 and α1, the parameters µ0, σ

2
0 , µ1 and σ2

1 should be such that
q1−α1σ1 + q1−α0σ0 = |µ1 − µ0|.

Now, using Proposition 2 and Proposition 3, we obtain the following equation
that determines the amount of data needed by the distinguisher:

N =
2n+0.5

√
λ− q1−α1

√
2

(q1−α0
+ q1−α1

) . (6)
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4.2 How to recover the key with key difference invariant bias

Here, we describe a generic key recovery attack approach that can be applied
to block ciphers for which a key difference invariant bias property for r rounds
has been identified. This procedure is described in Algorithm 1. We will feed
this algorithm with the related key differential paths that are going to be used
for the attack. Other entries to the algorithm will be the number of rounds of
the distinguisher r, the number of rounds rtop that we are going to append at
the top of the distinguisher and the number of rounds rbot that we are going
to add at the bottom of the distinguisher. In Algorithm 1, V [x] and V ′[x′] are
the counters containing the number of times the partial state values x and x′

(values corresponding to non-zero mask of linear approximations) occur for N
plaintext-ciphertext pairs under the key pair.

Algorithm 1 Generic Attack Procedure

Require: A set of linear approximations (a, b) and master key difference δ = κ ⊕ κ′

with the key difference invariant bias property holding.
1: for all related-key differential paths with a difference δ on the master-key do
2: Collect N plaintext-ciphertext pairs (P,C) under a key κ.
3: Collect N plaintext-ciphertext pairs (P ′, C′) under κ′ = κ⊕ δ.
4: Partially encrypt rtop rounds and partially decrypt rbot rounds, obtain partial

state values x and x′ covered by the input/output masks of (a, b) and compute
V [x] and V ′[x′] (number of times these partial state values occur).

5: Allocate a counter s.
6: for all linear approximations (a, b) do
7: Allocate counters S and S′ and set them to zero.
8: for all values of x and x′ do
9: if the linear approximation holds then

10: Add V [x] and V [x′] to S and S′, respectively.
11: end if
12: end for

13: Compute s = s+
[(

S
N

− 1
2

)
−
(

S′
N

− 1
2

)]2
.

14: end for
15: if s ≤ τ then
16: The guessed subkey is a possible subkey value.
17: Check exhaustively the remaining keys against several plaintext-ciphertext

pairs.
18: end if
19: end for
20: return encryption key.

5 Attack on 24-round LBlock

LBlock is a lightweight block cipher presented at ACNS 2011 by Wu and Zhang
[39]. It uses 64-bit block and 80-bit key and is based on a modified 32-round
Feistel structure. Its description is provided in the full version of this paper [2].
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5.1 Previous cryptanalysis

Despite its recent proposal, LBlock has already been extensively analyzed. For
example, impossible differential attacks have been mounted in the single-key
model [16, 21, 39] as well as attacks in the related-key model [26]. A related-
key truncated differential attack on 22-round LBlock was given in [22]. Some
other results concern integral cryptanalysis [20, 33, 34, 39]. A zero-correlation
linear attack was equally mounted against 22 rounds of LBlock [36]. Finally,
biclique attacks [17, 40] provide only a small gain against exhaustive search. So
the currently best non-exhaustive attacks against LBlock can break at most 22
rounds.

In this paper, we propose an attack on 24 rounds of LBlock. Our results are
summarized and compared to previous cryptanalysis in Table 1.

Table 1. Summary of attacks on LBlock

Model Attack #Rounds #keys Data per key Time Memory Ref.

SK Imp. Diff 20 1 263 CP 272.7 268 [39]
Imp. Diff 21 1 262.5CP 273.7 255.5 [21]
Imp. Diff 21 1 263CP 269.5 275 [16]
Imp. Diff 22 1 258CP 279.28 276 [16]
Integral 20 1 263.7CP 263.7 N/A [39]
Integral 20 1 263.6CP 239.6 235 [33]
Integral 22 1 261.6CP 271.2 N/A [20]
Integral 21 1 261.6CP 254.1 251.58 [34]
Integral 22 1 261CP 270 263 [34]

Zero-Correlation 22 1 264KP 270.54 264 [36]
Zero-Correlation 22 1 262.1KP 271.27 264 [36]
Zero-Correlation 22 1 260KP 279 264 [36]

RK Imp. Diff 22 8 247RKCP 270 N/A [26]
Differential 22 2 263.1RKCP 267 N/A [22]

Key Diff Inv Bias 24 32 262.29 RKKP 274.59 261 Here
Key Diff Inv Bias 24 32 262.95 RKKP 270.67 261 Here

5.2 Linear approximations with key difference invariant bias for
LBlock

We start by presenting the linear approximations with key difference invariant
bias under two keys related by a difference on a single nibble of the master key.
These linear approximations depicted in Figure 4, hold for 16 rounds (from round
5 to round 20) under the related-key differential paths depicted in the full version
of this paper [2]. The input mask of the 5-th round is (0000α00000000000) and
the output mask of the 20-th round is (000000000β000000), α 6= 0, β 6= 0. There
are in total (24 − 1) · (24 − 1) ≈ 27.81 such linear approximations.

We can see from Figure 4 that the relations Γr ·∆Kr = 0, for 5 ≤ r ≤ 20 hold
for all the related-key differential paths listed in the full version of this paper [2].
Therefore Condition 1 is satisfied, so the linear approximations in Figure 4 have
a key difference invariant bias under the related-key differential paths listed in
the full version of this paper [2].
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Fig. 4. 16-round linear approximations with key difference invariant bias for LBlock

13



The related-key differential paths that we used for our attack are presented
in the full version of this paper [2].

5.3 Key recovery for 24-round LBlock

The 16-round linear approximations with key difference invariant bias that we
used for our attack start before round 5 and end after round 20. The initial
four rounds, round 1 to round 4, are added before the linear approximations
and the final four rounds, round 21 to round 24, are appended after the linear
approximations. The details of this stage, and the nibbles to be computed in the
initial and the final four rounds are shown in the full version of this paper [2].
For this attack, r = 16, rtop = 4 and rbot = 4. These elements will be input to
Algorithm 1.

Attack procedure for 24-round LBlock. The attack for LBlock will follow
the attack procedure described in Algorithm 1. For this reason the Steps 2 and 3
of Algorithm 1 do not have to be executed for every path of Step 1. The Step 4
of Algorithm 1 for LBlock is composed itself of 14 consecutive steps. The details
of Step 4 are presented in the full version of this paper [2].

After proceeding from Step 5 to Step 15, we obtain the counter s containing
the χ2 statistics for the subkey guess. The right value of guessed 53-bit subkey is
likely to be among the candidates with the statistic s lower than or equal to the

threshold τ =
√
λ

N
√
2
q1−α0 + λ

2N . All cipher keys it is compatible with are tested

exhaustively against a maximum of 2 plaintext-ciphertext pairs.

Complexity estimation. We start by evaluating the complexity of Step 4.
From Step 4.1 to Step 4.14, the time complexity is T1 = N · 24 · 2 + 260 · 28 · 2 +
256 ·212 ·2+252 ·213 ·2+248 ·217 ·2+244 ·221 ·2+240 ·225 ·2+236 ·229 ·2+232 ·233 ·2+
228 ·237 ·2+224 ·241 ·2+220 ·245 ·2+216 ·249 ·2+212 ·253 ·2 = N ·25+2·269+11·266.

We will compute N by using Equation (6), after choosing the values of α0

and α1. Here, the number of linear approximations is λ = 27.81 and n = 64.
Different choices of α0 and α1 will provide a time-complexity trade-off. We start
by choosing some concrete values for α0 and α1 that lead to an optimized time
complexity. By setting α0 = 2−2.7 and α1 = 2−8.5, we have q1−α0

≈ 1.02 and
q1−α1 ≈ 2.77. In this way N ≈ 262.95 (Note that the same N (P,C) pairs or
N (P ′, C ′) pairs can be reused for different related-key differential paths under
the condition that ∆κ14∼17 remains the same.) and the threshold value gets
τ ≈ 2−55.02. Then, T1 ≈ 270.95 times of 1

8 round encryption which is equivalent
to 263.37 times of 24-round encryptions. Note that the time complexity of the
procedure described in Steps 6∼14 is negligible. Under each related-key differen-
tial path, the value of κ14∼17 is already known, so the time complexity of Steps
16-19 is about 276 · 2−8.5 = 267.5 times of 24-round encryption. Therefore, the
total complexity from Step 2 to Step 18 is about 267.58 encryptions. After pro-
ceeding from Step 2 to Step 18, if we can not succeed, this means that the value
of the right key does not belong to the values corresponding to the related-key
differential path tested. We can then use another related-key differential path
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to proceed the above attack. All possible values of the master key bits κ4∼21
are covered by the related-key differential paths, so we could always find the
right key where in the worst case, all the related-key differential paths have to
be tested. So the expected time complexity of our attack on 24-round LBlock is
about 267.58 ·[1+(1− 1

16 )+· · ·+(1− 15
16 )] ≈ 270.67 24-round encryptions. The data

complexity is 262.95 known plaintexts under each master key, while 260 · 2 = 261

bytes of memory are required to store the counters.
Another possible choice of α0 and α1 can lead to a different time-data com-

plexity trade-off. For example, if we set α0 = 2−2.7 and α1 = 2−4.5, then
q1−α0 ≈ 1.01 and q1−α1 ≈ 1.70, we get N ≈ 262.29. For these parameters the
expected time complexity is about 274.59 encryptions and the expected data com-
plexity is 262.29 known plaintexts for each master key. The memory requirements
are the same as in the previous attack.

Other possible time-data trade-offs with β0 = 2−2.7 for the attack on LBlock
can be visualized in Figure 6.

6 Attack on 27-round TWINE-128

TWINE is a lightweight block cipher proposed by Suzaki, Minematsu, Morioka
and Kobayashi in [37]. Its structure is based on a modified Type-2 generalized
Feistel scheme. The cipher’s description is given in the full version of this paper.

6.1 Previous cryptanalysis

In the original proposal of TWINE [37], the authors analyze the resistance of
TWINE against various types of attacks, such as impossible differential and
saturation attacks. The best analysis in this proposal is an impossible differential
attack against 23 rounds of TWINE-80 and against 24 rounds of TWINE-128.
Moreover, biclique attacks have been mounted in [17] for both full-round versions
of TWINE, but the time complexity of these attacks is only marginally lower
than exhaustive search.

6.2 Linear approximations with key difference invariant bias for
TWINE-128

We present 17-round (from round 6 to round 22) linear approximations with key
difference invariant bias under related-key differential paths for TWINE-128 in
Figure 5. In our attack, the input mask of the 6-th round is 00000000000α000 and
the output mask of the 22-th round is 0000000β000000000, α, β 6= 0. Thus, there
are 15 ∗ 15 ≈ 27.81 such linear approximations, exactly as in the case of LBlock.
We start by describing the related-key truncated differential path that we use
in our attack. This differential path was found by considering only differences
in only one nibble of the master key and by searching exhaustively over all such
configurations.

This path is described in the full version of this paper [2]. More precisely,
we consider a difference equal to 1 in the 22nd nibble of the master key. This
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differential path covers all the possible key values and is sufficient to recover the
right key value. From Figure 5, we can see that Γr ·∆Kr = 0, 6 ≤ r ≤ 22 (where
Kr and ∆Kr denote the subkey value and the subkey difference for the round r
respectively) and thus Condition 1 is satisfied.

6.3 Key recovery for 27-round TWINE-128

We utilize the 17-round distinguisher in Figure 5 to attack 27 rounds of TWINE-
128. The initial five rounds from round 1 to round 5 are added before the distin-
guisher and the final five rounds from round 23 to round 27 are appended after
the distinguisher, as shown in the full version of this paper. In such a way, the
first 27 rounds of TWINE-128 are covered. The attack is proceeded by following
Algorithm 1. The parameters are r = 17, rtop = 5, rbot = 5, see the full version
of this paper.

After proceeding from Step 5 to Step 15, we obtain the counter s containing
the χ2 statistics for the subkey guess. The right value of guessed 96-bit subkey is
likely to be among the candidates with the statistic s lower than or equal to the

threshold τ =
√
λ

N
√
2
q1−α0 + λ

2N . All cipher keys it is compatible with are tested

exhaustively against a maximum of 2 plaintext-ciphertext pairs.

Complexity estimation. We start by evaluating the complexity T1 of Steps
4.1-4.17. T1 = N ·220 ·2+N ·232 ·15·2+N ·240 ·15·2+260 ·244 ·2·15+256 ·248 ·2·15+
252 ·252 ·2·15+248 ·256 ·2·15+244 ·260 ·2·15+240 ·264 ·2·15+236 ·268 ·2·15+236 ·272 ·
2·15+232 ·276 ·2·15+228 ·280 ·2·15+224 ·284 ·2·15+220 ·288 ·2·15+216 ·292 ·2·15+
212 ·296 ·2·15 = N ·220 ·2+N ·232 ·15·2+N ·240 ·15·2+7·2104 ·2·15+7·2108 ·2·15.

To compute N , we will use Equation (6). Here, the number of linear approx-
imations is λ = 27.81 and n = 64. Therefore N will be computed after choosing
the values of α0 and α1. Different choices of these values will provide a data-time
trade-off. We start by choosing some concrete values for α0 and α1 that lead to
an optimized time complexity.

Consider for example α0 = 2−2.7 and α1 = 2−8.5. Then q1−α0 ≈ 1.02 and
q1−α1

≈ 2.77. By replacing these values to Equation (6), we obtain N ≈ 262.95.

The threshold value gets τ =
√
λ

N
√
2
q1−α0 + λ

2N ≈ 2−55.02. Thus T1 ≈ 2115.81 times

of 1/8 encryption, which is equivalent to 2108.05 times of 27-round encryption.
The complexity of computing the counters S and S′ is negligible. The complexity
of the last step is 2128 ·2−8.5 = 2119.5 times of 27-round encryption. Thus the total
time complexity of the attack is about 2119.5 27-round TWINE-128 encryptions.
The data complexity is N ≈ 262.95 known plaintexts per key and the memory
requirements are 261 bytes to store the counters.

In the same way, if we want to optimize the data complexity, we choose
α0 = 2−2.7 and α1 = 2−4.5. Then q1−α0 ≈ 1.02 and q1−α1 = 1.70. Equation (6)
gives now N = 262.29 and the threshold is 2−54.38. The time complexity of the
attack is 2123.5 and the data complexity is N = 262.29 known plaintexts per key.
Figure 7 depicts different possible data-time trade-offs with β0 = 2−2.7.
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Fig. 5. 17-round linear approximations for key difference invariant bias for TWINE-128
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7 Conclusions

In this paper, we reveal the fundamental property of key difference invariant
bias in key-alternating block ciphers. We show how to identify this property effi-
ciently. We propose a statistical distinguisher for the property and demonstrate
the property for 5 rounds of AES. As an illustration, using our novel crypt-
analytic technique, under related keys, we attack more rounds of LBlock and
TWINE than the best previous cryptanalysis.
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