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Abstract. Algebraic attacks are an important class of cryptanalytic techniques. Yet, precisely
estimating the security margins that a block cipher may provide against them is generally
difficult, as sound theoretical tools are missing for this purpose. Therefore, most recent block
cipher proposals combine different heuristic arguments in order to argue about their practical
security against such attacks. In this paper, we discuss the relevance and correlation of these
arguments, with a practical case-study based on the lightweight ciphers LED and Piccolo.

1 Introduction

The design of modern block ciphers usually comes with arguments of security against
several cryptanalysis techniques. These arguments typically include the evaluation of
statistical attacks such as linear and differential cryptanalysis [3, 19], and the investiga-
tion of structural properties leading to integral or slides attack [5, 18]. A number of well
understood heuristic tools are available for this purpose. For example, the wide-trail
strategy can be used to design block ciphers that are practically secure against statis-
tical attacks [13]. One interesting feature of these heuristic tools is that they do not
only provide security, but also allow the evaluation of (informal) bounds against certain
categories of attacks. As a result, they can be used to compare different algorithms.

For other types of attacks though, and in particular for the algebraic cryptanalysis
that we consider in this paper, security analyzes are hardly as systematic. This may
sound counterintuitive, as algebraic complexity is known to be a central criteria for
block cipher security since the seminal work of Shannon [24]. Yet, the discussion of
algebraic attacks usually comes late (if at all) in block cipher specifications.

One possible reason of this situation is that the complexity of algebraic attacks is
hard to evaluate [8, 9, 12, 20]. It is also not simple to interpret successful attacks against
weakened versions of a block cipher. Yet, it remains that instances of (admittedly weak)
block ciphers that are actually broken with algebraic attacks exist in the literature (e.g.
the Keeloq and MiFare ciphers [10, 11]). Besides, it has also been shown that the alge-
braic complexity of a block cipher has a significant impact in the context of algebraic
side-channel attacks [22, 23]. Hence, in view of the recent design of numerous lightweight
block ciphers for constrained applications [15], it becomes increasingly interesting to
understand the extent to which these new proposals with simplified structure and low
implementation cost remain sufficiently robust against algebraic attacks.
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The security of a block cipher against such cryptanalyses can be argued with dif-
ferent types of metrics. For example, the complexities of the systems of equations
representing different block ciphers have been compared in [4]. Another solution is
to estimate the number of block cipher rounds needed to reach maximum algebraic
degree [6]. More recently, cube testers have been proposed as another systematic alter-
native to construct algebraic distinguishers [1]. Eventually, the most direct approach is
to investigate the complexity of solving a block cipher system of equations, e.g. with a
SAT solver or Groebner basis tools [16]. However in this last case, directly solving the
system of equations of a cipher should always be impossible (or would be the sign of a
very weak design). This raises the question of which reduced versions of a cipher can
be used to meaningfully argue about security margins against algebraic cryptanalysis.

In this paper, we consider the lack of comprehensive tools for the evaluation of
algebraic attacks and discuss the relevance and limitations of a combined approach.
Namely, we mix the estimation of informal criteria such as the system of equations
size or the algebraic degree of a block cipher, with heuristic criteria such as the solv-
ing time of attacks against different versions of the target cipher. For this purpose,
we consider attacks against full ciphers with variable guessing strategies, and attacks
against reduced ciphers with fixed guessing strategy. Next, and taking the example of
the block ciphers LED and Piccolo [17, 25], we discuss the extent to which these criteria
lead to similar intuitions and can be used to estimate security margins against alge-
braic cryptanalysis. Doing so, we introduce a metric of “Equivalent Encryption Time”
(EET) which essentially corresponds to the encryption speed that has to be reached for
an exhaustive key search to be more efficient than an algebraic cryptanalysis. Let t be
the median time needed for an algebraic attack to succeed, and n be the number of key
bits to find, EET is defined as t/2n. One interesting feature of this metric is that it al-
lows comparing the security of different algorithms against algebraic attacks (i.e. their
advantage over exhaustive search), independent of their encryption time. We use it to
comment on the larger security margins of LED compared to Piccolo, and highlight
observations regarding the impact of using a SAT solver in security evaluations.

2 Background

2.1 The LED block cipher

We consider the version of the cipher with 64-bit key that alternates 8 steps with key
additions, each step being made of 4 rounds. It is illustrated in Figure 1, where p
denotes a plaintext, c a ciphertext, k the cipher key and ⊕ the bitwise XOR. Each
round is made of a constant addition, the parallel application of the PRESENT S-box
and the AES-like operations ShiftRows and MixColumns. The cipher state and the key
are represented as (4× 4) matrices in F24 , e.g.

s =


m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15

 .

Following, the different round operations are defined as follows.
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Fig. 1: The LED block cipher.

AddConstants. At each round, the state is XORed with a constant matrix. Constant
values are produced by an LFSR with feedback polynomial X6 +X5 + 1, where the six
register values are denoted as {rci}5i=0, and organized as follows:

0 (0||rc5||rc4||rc3) 0 0
1 (0||rc2||rc1||rc0) 0 0
2 (0||rc5||rc4||rc3) 0 0
3 (0||rc2||rc1||rc0) 0 0

 .

SubCells applies the PRESENT S-box to the 16 cells of the state, defined as follows:

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

ShiftRows rotates the ith row of the state by i positions to the left (0 ≤ i ≤ 3).

MixColumns finally considers each nibble (4-bit) of the state matrix as an element of
F24 , with X4 +X + 1 as polynomial for the field multiplication. It then multiplies this
state with the following constant matrix:

4 1 2 2
8 6 5 6
B E A 9
2 2 F B

 .

2.2 The Piccolo block cipher

We consider the version of the cipher with 80-bit key that is made of 25 rounds. It
is illustrated in Figure 2, where p denotes a plaintext, c a ciphertext, wki and rki
the cipher subkeys and ⊕ the bitwise XOR. In this picture, F represents a non-linear
function made of two SubCell and one Diffusion operations, and RP corresponds to a
round permutation made of a wire crossing. More precisely, the 64-bit state of Piccolo
is divided in four words of four nibbles. The F function operates on four nibbles and
successively applies a layer of S-boxes, a Diffusion operation and the same layer of
S-boxes again. The Piccolo S-box is exhaustively defined by the table:

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) E 4 B 2 3 8 0 9 1 A 7 F 6 C 5 D
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Fig. 2: The Piccolo block cipher.

Then, the Diffusion operation considers the nibbles as elements in F2[X]/(X4 +X + 1)
and multiplies the cipher state with the following constant matrix:

M =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 .

Besides, the round permutation RP divides the 64-bit state into eight 8-bit data pieces
and permutes them as follows:

RP : (x0, x1, x2, x3, x4, x5, x6, x7) 7→ (x2, x7, x4, x1, x6, x3, x0, x5).

Finally, the key scheduling takes an 80-bit master key k as input and outputs the
whitening and the round keys. The first ones are directly defined as:

wk0 ← k[0 . . . 7]||k[24 . . . 31], wk1 ← k[8 . . . 23],
wk2 ← k[64 . . . 71]||k[56 . . . 63], wk3 ← k[48 . . . 55]||k[72 . . . 80],

where k[i . . . j] denotes the key bits with indexes between i and j. Next, the round keys
are defined in function of the round constants as follows:

(rk2i||rk2i+1)← (con2i||con2i+1)⊕


k[32 . . . 63] if i mod 5 = 0 or 2,
k[0 . . . 31] if i mod 5 = 1 or 4,

(k[64 . . . 79]||k[64 . . . 79]) otherwise.

(con2i||con2i+1)← (ci+1||c0||ci+1||00||(ci+1||c0||ci+1)⊕ {0x0F1E2D3C},

where ci is the 5-bit representation of the current round index i.



2.3 Algebraic attacks

Algebraic attacks have been proposed by Courtois and Pieprzyk in [12] and usually
include two distinct steps. In the first place, the adversary describes his target cipher
as a system of quadratic, cubic, . . . equations. In general, the most challenging part
of this step is to describe the non-linear S-boxes. Solutions for this purpose have been
described by Biryukov and De Cannière in [4]. Tools to convert sparse systems of
low-degree equations into a satisfiability problem have been proposed in [2]. Next, the
second step of the attack is to try solving the system. The problem of solving systems
of quadratic equations is NP-complete and there exist no efficient way to solve it in
general. Yet, different heuristics exist that may be effective against certain instances
of problems. Typical examples include the reduction to a Gröbner basis as proposed
in [8], or a satisfiability problem as used in [11]. We focus on this second solution in
the following sections. Beforehand, it is interesting to recall that the way to turn a
cryptosystem into equations is not unique, and the representation of the problem may
significantly influence the efficiency of the resulting attack (with both tools).

2.4 Algebraic degree of a Boolean function

From a mathematical point of view, a cipher E is a vectorial Boolean function of
dimension n having m variables:

E : (X,K) 7→ Y = E(X,K),
Fm
2 → Fn

2 .

That is, each of the n coordinates is a Boolean function with m variables that should
not be distinguishable from a randomly generated Boolean function. In general, any
non-random behavior of any combination of coordinates can be the sign of a weakness
and may be exploited in an attack (e.g. linear cryptanalysis [19], etc.). In the case
of algebraic attacks, the degree of its Boolean functions is a good indicator for the
strength of a block cipher. It is defined as follows.

Definition 1. Algebraic degree. Let g be a Boolean function from Fm
2 into F2. Such a

Boolean function can be represented using its algebraic normal form (ANF):

g(x1, . . . , xm) =
∑

(u1,...,um)∈Fm
2

a(u1,...,um)

m∏
i=1

xui
i .

Such representation is unique and allows a simple definition of the degree of g:

deg(g) , max
(u1,...,um)∈Fm

2

{
u =

m∑
i=1

ui, a(u1,...,um) 6= 0

}
.

In the case of a vector Boolean function G = (g1, . . . , gn), the degree is defined as the
maximum degree of its coordinates:

deg(G) , max
1≤i≤n

deg(gi).



In general, the state size of recent ciphers makes the explicit computation of the ANF
for any coordinate of the cipher an intractable problem (a similar comment holds for
hash functions). This situation motivated the derivation of bounds to estimate the
algebraic degree as part of the security evaluation of a cryptographic primitive.

Taking the example of LED and Piccolo, a natural question is to determine how
the degree of these ciphers evolves with the number of round iterations1. The most
obvious way to do this, is to use what is generally called the trivial bound. It consists in
bounding the degree of a round permutation of degree d after r iterations by dr. This
trivial bound usually gives good results when the number of rounds is relatively small,
but fails as this number increases. For this purpose, a better estimation is needed.

Let us now denote the round functions of LED and Piccolo as F = L′◦S ◦L, with S
the non-linear S-box layer and L a linear (over Fn

2 ) diffusion layer (i.e. two consecutive
S-box layers will be separated by the linear function L ◦ L′). Due to the mixing effect
of the linear layer, the following quantity will be of interest for “chaining” rounds.

Definition 2. Let G = (g1, . . . , gn) be a vector Boolean function of dimension n. Then
we denote by δk(G) the maximal degree of the product of at most k coordinates of G:

δk(G) , max
I⊂{1,...,n}

#I≤k

deg

(∏
i∈I

gi

)
.

We now present a former result from [7]: it aims to provides a better approximation
for the algebraic degree of a block cipher than the trivial bound.

Theorem 1. If a vector Boolean function S from Fn
2 to Fn

2 consists in the concatena-
tion of smaller permutations from Fn′

2 to Fn′
2 , then for any vector Boolean function G,

the degree of G ◦ S is upper-bounded by:

deg(G ◦ S) ≤ n− n− deg(G)

γ(S)
,

where γ(S) , max
1≤i≤n′−1

n′ − i
n′ − δi(S)

.

Corollary 1. Let Fr be the vector Boolean function corresponding to r iterations of
a cipher round-function F as defined earlier. Then, its degree can be upper-bounded
according to the degree of r − 1 iterations of this function and the value of γ(S):

deg(Fr) ≤ n− n− deg(Fr−1)

γ(S)
.

3 Estimating the algebraic degree of LED and Piccolo

In this section, we estimate the algebraic degree of LED and Piccolo. The goal of
this estimation is to investigate possible links between the algebraic degree and the
resistance of these block ciphers against the SAT-based algebraic attacks in Section 4.

1 Since for both ciphers, the key addition corresponds to a bitwise XOR with a constant, the algebraic degree
of the cipher can be computed independent of the key scheduling part.



3.1 On the algebraic degree of LED

The non-linear layer of LED consists in the parallel application of the PRESENT S-
box. This S-box is a 4-bit permutation with algebraic degree 3. Thus, the degree of one
round is also 3. We use Theorem 1 to derive bounds on the degrees for more rounds.
Let us recall this bound for this particular instance where γ(S) = 3:

deg(Fr) ≤ 64− 64− deg(Fr−1)

3
.

It directly gives the results in Table 1. As expected, it is not tight for small degrees.

Table 1: Bounds on the algebraic degree of r-round LED.

Numbers of rounds Trivial bound Theorem 1

1 3 -
2 9 45
3 27 47
4 63 51
5 63 59
6 63 62
7 63 63

3.2 On the algebraic degree of Piccolo

The only source of non-linearity of Piccolo is the 16-bit-to-16-bit function F that is
composed of two identical S-box layers separated by a matrix multiplication. As for
LED, we start by investigating the algebraic degree for this function and then discuss
its extension to the full cipher using Theorem 1.

Degree of F coordinates. Let us denote the input/output bits of the S-box as
(x0, x1, x2, x3) and (y0, y1, y2, y3), respectively. The ANFs of the S-box coordinates are:

y0 = x1 + x0x1 + x2 + x0x2 + x0x1x2 + x3 + x0x3 + x1x3 + x1x2x3,
y1 = 1 + x0 + x0x1 + x1x2 + x3 + x1x3 + x2x3 + x1x2x3,
y2 = 1 + x1 + x2 + x1x2 + x3,
y3 = 1 + x0 + x2 + x3 + x2x3.

Note that the degree of the S-box is 3 but only the first two coordinates have this
maximal degree, the last two only have degree 2. That is, the algebraic degree only
captures information about the most complex coordinate of a vector Boolean function.
After the parallel application of 4 S-boxes, the resulting 16 output bits (y0, . . . , y15)
are sent to MixColumns. Let us denote by (z0, . . . , z15) these output bits of MixColumns
that can be expressed as functions of y variables as follows.



z0 = y3 + y4 + y7 + y8 + y12
z1 = y0 + y3 + y4 + y5 + y7 + y9 + y13
z2 = y1 + y5 + y6 + y10 + y14
z3 = y2 + y6 + y7 + y11 + y15
z4 = y0 + y7 + y8 + y11 + y12
z5 = y1 + y4 + y7 + y8 + y9 + y11 + y13
z6 = y2 + y5 + y9 + y10 + y14
z7 = y3 + y6 + y10 + y11 + y15
z8 = y0 + y4 + y11 + y12 + y15
z9 = y1 + y5 + y8 + y11 + y12 + y13 + y15
z10 = y2 + y6 + y9 + y13 + y14
z11 = y3 + y7 + y10 + y14 + y15
z12 = y0 + y3 + y4 + y8 + y15
z13 = y0 + y1 + y3 + y5 + y9 + y12 + y15
z14 = y1 + y2 + y6 + y10 + y13
z15 = y2 + y3 + y7 + y11 + y14

Combining these equations, we can express the ANFs of the 16 coordinates of F. Due to
space limitation we cannot explicitly provide the equations. The degree db(F) obtained
for the b-th coordinate of F is:

db(F) =


9 if b = 0 mod 4,
8 if b = 1 mod 4,
6 if b = 2 mod 4,
5 if b = 3 mod 4.

(1)

Then, we can use Theorem 1 to bound the degree of two or more Piccolo rounds.
Nevertheless, the irregular distribution of the degrees among the coordinates suggests
that such bounds will not be tight (as will be confirmed in Table 2). In the following,
we derive bounds for 2 rounds based on the values of δk(F) that we have computed as:

δ1(F) = 9,

δ2(F) = 12,

δ3(F) = 13,

δk(F) = 14, (k = 4, 5, 6),

δk(F) = 15, (k = 7, . . . , 15).

Bound on the degree of 2 rounds of Piccolo. First let us precise the particular
structure of the inputs of the 2-round F functions. The 16-bit state is divided into two
bytes, each one being the XOR between a byte of the plaintext and a byte from the
output of a previous F function. Given the degrees db(F), we can bound the degree
of the second-round F function outputs by considering all possibles distributions over
the 2 aforementioned bytes. More precisely, let us consider the degree db(F ◦ F) for a
given coordinate b of a second-round F function. Then, the highest degree monomial of
its ANF is the product of db(F) input bits of the second-round F function considered.
These input bits are distributed among the two aforementioned bytes: d1 belongs to



the first and d2 to the second byte (d1 + d2 = db(F)). Let us recall that the d1 (resp.
d2) bits correspond to the addition between one output bit of a first-round F function
and a plaintext bit. Hence, the degree of the product of those d1 (resp. d2) bits can be
upper-bounded by max0≤i≤d1 i + δd1−i(F). As a result, we obtain the following bound
on the degree of a coordinate of a second-round F function.

db(F ◦ F) ≤ max
0≤i≤d1
0≤j≤d2

d1+d2=db(F)

i+ j + δd1−i(F) + δd2−j(F). (2)

We now provide the maximum values for the algebraic degree of the different output
bits after two rounds of Piccolo, and the corresponding decompositions (d1, d2):

b = 0 mod 4 : Maximum 29 obtained for (d1, d2) = (4, 5) (or (3, 6) or (2, 7)).

b = 1 mod 4 : Maximum 28 obtained for (d1, d2) = (4, 4) (or (3, 5) or (2, 6)).

b = 2 mod 4 : Maximum 26 obtained for (d1, d2) = (3, 3) (or (2, 4)).

b = 3 mod 4 : Maximum 25 obtained for (d1, d2) = (2, 3).

Bounds on the degree of reduced-round Piccolo. We finally derive bounds on
the reduced-round ciphers from the bounds obtained on one and two rounds (using
Theorem 1). Table 2 summarizes the results. In the first column, the trivial bound
deg(Fr) = deg(F )r is indicated. Then in the second column, the bound obtained using
Theorem 1 can be found. In addition, the last column contains a bound on the algebraic
degree of reduced-round versions of the cipher obtained using Theorem 1 and the tighter
bound on the 2-round version derived in the previous paragraph.

Table 2: Bounds on the algebraic degree of r-round Piccolo.

Numbers of rounds Trivial bound Theorem 1 Theorem 1 + (2)

1 9 - -
2 63 47 29
3 63 60 52
4 63 63 62
5 63 63 63

Let us notice that the first non-trivial bound is far from being tight according to
the gap we can observe with entries in the last column. This suggests that the algebraic
degree of Piccolo may be harder to estimate than the one of LED. It is likely that even
the last column does not reflect the actual behavior of this algebraic degree.

Besides, and by contrast with the LED case, these estimations show that the alge-
braic strength of the Piccolo round-function output bits are not uniform. Hence, the
relevance of the algebraic degree of the full function (that is the maximum degree of
its coordinates) may be decreased in this case. This fact is naturally amplified by the
Feistel structure of Piccolo, as at most half of its output bits might have reached de-
gree 63 after 5 rounds. The other half of the state is composed of bits having at most
degree 62 (corresponding to the 4-round outputs). Hence, they should pass through
the F function at least once more to expect reaching the maximum degree.



4 Experimenting SAT-based algebraic attacks

Our algebraic cryptanalysis experiments are based on a SAT solver. We used the Min-
iSat v1.14 SAT solver [14] that is an open-source tool rewarded in different SAT compe-
titions. Exploiting it requires describing the target cipher as a CNF, i.e. a conjunction
of disjunction of variables. For this purpose, the straightforward strategy would be to
express every ciphertext bit directly in function of the plaintext variables. However,
this implies the apparition of numerous high degree monomials that are hardly man-
aged by the solver. To overcome this limitation, the usual approach is to introduce
intermediate literals in the cipher description (details are given next).

Since recovering the full cipher keys without additional information than a plain-
text/ciphertext pair is (hopefully) difficult, our experiments were performed giving
some key bit values as extra information to the solver. Depending on the experiments,
this number of bits provided may differ. We will refer as number of unknown key bits
the remaining number of key bit variables in the system after providing the extra
information. Note that we chose to fix the first key bits of the master keys.

4.1 On the size of the CNF representation

In this section we focus on the complexity of the representation of both ciphers. Since
the representation may strongly influence the resolution time, we tried to build systems
having similar structures. Hence, we used the same construction method for LED and
Piccolo. It consists in obtaining a representation by adding intermediate literals before
and after each S-box execution and after each bit-wise XOR operation.

More precisely for the 64-bit key full-version of LED, the CNF representation has
been obtained by adding intermediate literals before and after both the key additions
and the AddConstants operations, and after the SubCells operations. As a result, we
obtained a system of approximately 70.000 equations in 12.000 variables with at most
12 literals per clause. For the 80-bit key full-version of Piccolo, the CNF representation
has been obtained by adding intermediate literals before and after each S-box in the
F-function, and after the bit-wise addition between the state and the round keys (more
precisely after the round permutation, but this does not change the representation
because the permutation is linear). Concerning the key scheduling, we added literals for
all the sub-keys. As a result, we obtained a representation of the Piccolo cryptosystem
with 6.000 variables used in 50.000 equations. There are at most 8 variables per clause.
For both ciphers, the representation of the S-box has been obtained with the same
method, and gives 64 equations of 5 literals each and has 8 literals.

We can see that the LED representation requires more equations than Piccolo (re-
spectively 70.000 and 50.000), while the number of variables in the LED representation
is twice the number of variables in Piccolo. Moreover, we notice that the literals are
more connected in the LED representation than in the Piccolo representation. This
may suggest that LED is more robust than Piccolo against algebraic attacks, at least
when deriving representations in such a straightforward fashion.



4.2 Attacking the full-version with variable key-guess sizes

We now consider the evolution of the resolution time of the system as a function of the
number of the key bits unknown to the solver. The target ciphers are the full-version
of the algorithms proposed at CHES. The representation used are the one described in
Section 4.1 and, as mentioned earlier, we have fixed the first key bit values. We aimed
at comparing resolution times for a number of unknown key bits ranging from 4 to 18,
which translates in providing 46 to 60-bit values (resp. 62 to 76 bits) to the solver for
recovering the full key of LED (resp. Piccolo). In the case of LED cipher, we did not
manage to obtain results when guessing less than 49 key bits, due to the prohibitive
solving time of such experiments. The experimental results obtained are provided in
Figure 3, where the curves represent the evolution of the median solving time as a
function of the number of key bits unknown to the solver.
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Fig. 3: Solving time vs number of unknown key bits for LED and Piccolo.

As expected, we can observe that the resolution time grows as an exponential
function of the number of unknown bits for both ciphers. We also notice that the
Piccolo curve is shifted by 2 bits on the x-axis compared to the LED curve. Hence,
this metric again suggests that Piccolo could be slightly weaker than LED against
algebraic cryptanalysis. Such result naturally has to be considered carefully, since the
total number of key bits differs in LED and Piccolo.

Next, we translated these median solving times into EET. Intuitively, the EET
represents the encryption speed that should be reached by an implementation of the
block ciphers, for the exhaustive search to be more efficient than the SAT solver based
cryptanalysis. Results are plotted in Figure 4. We first remark that for a given number of
unknown key bits, the EET of different ciphers are proportional to the corresponding
median solving times. Hence, comparing LED and Piccolo by using this metric will
result in the same conclusions as in Figure 3. Nevertheless, this metric is of interest
since it allows the observation of some phenomenons that are not straightforwardly
visible when considering the median solving time in Figure 3.

First, and in both plots, two different parts can be observed: the EET initially
decreases up to a certain point, where it then becomes stable. While having the same
shape, both curves differ in the point where the EET becomes stable. The EET for
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Fig. 4: EET vs number of unknown key bits for LED and Piccolo.

LED stops decreasing when more than 10 key bits are unknown (stabilizing around
an EET equal to 0.5 · 10−2), while for Piccolo, it stops decreasing when more than 8
key bits are unknown (stabilizing around an EET equal to 1 · 10−3). This decreasing
behavior is mainly due to the construction phase performed by the SAT solver prior
to the resolution: as the number of unknown key bits increases, this construction step
becomes negligible compared to the resolution time. Since the LED system is bigger
than the one of Piccolo, it is natural that the stabilization happens later for LED.

Second, the values of EET obtained when enough key bits are unknown are signif-
icantly larger than the actual encryption time, even on a standard PC. This suggests
that both ciphers have satisfying security margins against this type of attack. Never-
theless, the EET is larger for LED than for Piccolo (by an approximate factor 5).

4.3 Attacking reduced-round versions.

As a complement to the previous experiments, we now investigate the security of
reduced-round versions of our target ciphers, for different number of unknown key
bits. This requires a slight adaptation for the LED cipher. Indeed, in its standard ver-
sion, LED performs a bitwise XOR with the key every four rounds (which makes it
difficult to vary the number of rounds with such a small granularity). Hence, for this
experiment, we choose to perform only two key-additions at the beginning and at the
end of LED, regardless the number of rounds2. In this setting, we performed experi-
ments for a number of unknown key bits ranging from 12 to 16 for LED, and from 16
to 20 for Piccolo. This choice has been made in order to obtain equivalent ranges of
resolution times for both reduced-round ciphers. Figure 5 depicts the evolution of the
solving time depending on the number of rounds we have fixed.

We observe that for both ciphers, the curves obtained have a very similar shape,
namely a highly increasing part first, and a stabilized/slowly increasing second part (let
us recall that the y-axis is log-scaled). This means that increasing the number of rounds
beyond some limit does not provide significantly more security anymore regarding the

2 The reason why we modified LED in such a way is detailed in Section 4.4.



Fig. 5: Solving time for different numbers of unknown key bits and rounds (y-axis scale
logarithmic).

solving time of the system. One possible interpretation of this fact is the following.
The solving time of an algebraic attack primarily depends on the size of the system
and the “complexity” of the equations it aims at solving (partially captured by the
algebraic degree). As equations are getting more complex with the number of rounds,
they reach their maximum “complexity” (and algebraic degree) at some point. From
this point on, only the size of the system goes on increasing, hence explaining a slower
increase of the solving time. We now discuss the links between the algebraic degree for
the reduced-round versions of the ciphers, and the bends observed in Figure 5.

LED cipher. We observe that the fast increase in solving complexity seems to saturate
after approximately 5 rounds in this case. In Section 3, we obtained bounds on the
algebraic degree of reduced-round LED that were 62 for the 5-round version and 63
(the maximum degree) for the 6-round version. As a result, the position of the bends
the figure seems to be reasonably correlated with the algebraic degree for the LED
cipher. We assume that this correlation is enhanced thanks to the regularity of the
distribution for the degrees over the output coordinates of the cipher.

Piccolo cipher. In this case, the fast increase in solving complexity extends up to
approximately 8 rounds. By contrast, the bound obtained in Section 3 becomes close
to the maximal degree after only 4 or 5 rounds. Hence, the link between the algebraic
degree and the solving time is less direct for Piccolo. As previously mentioned, this may
be due to two reasons. First, the bounds derived are upper bounds on the algebraic
degree of the cipher. The significant improvements observed by using the additional
information (2) to derive bounds for Piccolo suggest that these bounds are probably
not as tight as the ones obtained for LED. Secondly, the degrees for the outputs of the
F function show that the algebraic complexity of this cipher depends on the position
of the output bit considered. However, the algebraic degree only takes into account the
maximal degree (i.e. the strongest bit) and does not consider any other information on
the distribution of the degrees (median or minimal degrees for instance). Moreover as
we remark in Section 3, half of the bits need one more round to reach this degree. This



suggests that the bend may correspond to the point where all output bits reach a high
degree, and not to the point where the strongest output bit reaches a high degree.

4.4 On the heuristic impact of the key addition layers in LED

In this last experiment, we focused on a parasitic effect we observed on LED, that is
linked to the heuristics used in the SAT solver. The point to emphasize is that depend-
ing on the number of key additions in the LED cipher, the solving time may significantly
vary. First observe that the full-round version of LED has 32 rounds (traditionally di-
vided in eight 4-round steps separated by key additions). In order to illustrate the
parasitic effect, we used a modified version of LED with 32 rounds, but variable num-
ber of key additions. We additionally provided a 48-bit key information to the solver
(hence 16 bits remain to be found) and plotted the median solving time as a function of
the number of key additions (ranging from 2 to 32) in Figure 6. Interestingly, it clearly
exhibits an decrease of the median solving time with the number of key additions.
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Fig. 6: Effects of the number of LED key additions on the solving time.

While this observation may appear surprising (as the number of key additions has
no impact on the algebraic degree), it can be explained by the way the MiniSat solver
chooses the order of variables to guess [26]. In summary, MiniSat uses a variant of the
VSIDS algorithm in which each literal is being attributed a counter, initialized with
the number of occurrences of this literal in the description. Then, literals having the
highest counters are assigned first. When a conflict appears, the counters are multiplied
by 0.95. Looking at the system of equations of a block cipher, starting with guesses on
the internal literals can produce conflicts, as these internal literals are more connected
to each others than the key literals. Unfortunately, in our representation of the original
LED cipher, these internal literals have greater counters than the key literals. For
example, the key variables appear twice in each bitwise XOR between the state and
the key, while an internal literal between AddConstants and SubCells might appear
up to 66 times. Hence, by repeating key additions, we actually increase the counters
corresponding to the key literals and thus suggest to the solver to start guessing a key
bit (which may lead to a more efficient solving, as witnessed by the results in Figure 6).



References

1. Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube Testers and Key Recovery
Attacks on Reduced-Round MD6 and Trivium. In Orr Dunkelman, editor, FSE, volume 5665 of Lecture
Notes in Computer Science, pages 1–22. Springer, 2009.

2. Gregory V. Bard, Nicolas T. Courtois, and Chris Jefferson. Efficient Methods for Conversion and Solution
of Sparse Systems of Low-Degree Multivariate Polynomials over GF(2) via SAT-Solvers. Cryptology ePrint
Archive, Report 2007/024, 2007. http://eprint.iacr.org/.

3. Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In Alfred Menezes and
Scott A. Vanstone, editors, CRYPTO, volume 537 of LNCS, pages 2–21. Springer, 1990.

4. Alex Biryukov and Christophe De Cannière. Block Ciphers and Systems of Quadratic Equations. In
Thomas Johansson, editor, FSE, volume 2887 of LNCS, pages 274–289. Springer, 2003.

5. Alex Biryukov and David Wagner. Slide Attacks. In Lars R. Knudsen, editor, FSE, volume 1636 of Lecture
Notes in Computer Science, pages 245–259. Springer, 1999.

6. Christina Boura and Anne Canteaut. On the Algebraic Degree of Iterated Permutations. Finite Fields
and Applications - Fq10, Gent, Belgium, 2011.

7. Christina Boura, Anne Canteaut, and Christophe De Cannière. Higher-Order Differential Properties of
Keccak and Luffa. In Antoine Joux, editor, FSE, volume 6733 of Lecture Notes in Computer Science,
pages 252–269. Springer, 2011.

8. Johannes Buchmann, Andrei Pyshkin, and Ralf-Philipp Weinmann. Block Ciphers Sensitive to Gröbner
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