Understanding the division property

Christina Boura
(joint work with Anne Canteaut)

ASK 2015, October 1, 2015
Introduction

- In Eurocrypt 2015, Yosuke Todo introduces a new property, called the division property.
- Combination (in some sense) of higher-order differential and saturation attacks.
- Construction of more powerful generic distinguishers for both SPN and Feistel constructions.
- Use of this new property for breaking full MISTY-1 (best paper award at CRYPTO 2015).
Notation

If $x, u \in \mathbb{F}_2^n$, we denote

$$x^u = \prod_{i=1}^{n} x_i^{u_i}$$

Example: $(n = 4)$

$$x = (x_1, x_2, x_3, x_4) = (1, 1, 0, 1),$$
$$u = (u_1, u_2, u_3, u_4) = (1, 0, 1, 0)$$

$$x^u = x_1^{u_1} x_2^{u_2} x_3^{u_3} x_4^{u_4} = 1^1 1^0 0^1 1^0 = 0.$$
Let X be a multiset of elements in \mathbb{F}_2^n.

For $0 \leq k \leq n$, we say that X has the division property \mathcal{D}_k^n if

$$\bigoplus_{x \in X} x^u = 0,$$

for all $u \in \mathbb{F}_2^n$ such that $\text{wt}(u) < k$.

Division property
Division property - Example

\[X = \{ 0x0, 0x3, 0x3, 0x3, 0x5, 0x6, 0x8, 0xB, 0xD, 0xE \}. \]

Compute \(\bigoplus_{x \in X} x^u \) **for all** \(u \in F_2^4 \).

Example:

\[\bigoplus_{x \in X} x^u = 1, \]

for \(u = 1011 \), \(u = 1101 \) and \(u = 1110 \).

So, \(\bigoplus_{x \in X} x^u = 0 \) **for all** \(u \) **with** \(\text{wt}(u) < 3 \).

Conclusion:

\(X \) **has the division property** \(D^4_3 \).
Division property: a more general definition

For \(\mathbf{u} = (u_1, \ldots, u_m) \), \(\mathbf{x} = (x_1, \ldots, x_m) \) \(\in \mathbf{F}_2^{n_1} \times \cdots \times \mathbf{F}_2^{n_m} \) define

\[
\mathbf{x}^\mathbf{u} = x_1^{u_1} \cdots x_m^{u_m}
\]

Let \(X \) be a multiset of elements in \(\mathbf{F}_2^{n_1} \times \cdots \times \mathbf{F}_2^{n_m} \). \(X \) has the division property \(D_{n_1, \ldots, n_m}^{k(1), \ldots, k(q)} \) if

\[
\bigoplus_{x \in X} x^\mathbf{u} = 0 \quad \text{for all } \mathbf{u} \text{ such that } wt(\mathbf{u}) \ngeq k(1), \ldots, wt(\mathbf{u}) \ngeq k(q)
\]

(\(a \succeq b \) means that \(a_i \geq b_i \) for all \(i \)).
Example

Let X be a multiset of elements in $\mathbb{F}_2^8 \times \mathbb{F}_2^8$ having the division property $\mathcal{D}_{[1,5],[3,3],[4,5],[5,1],[6,0]}^{8,8}$.

- If (u_1, u_2) is chosen in the white part:
 \[\bigoplus_{(x_1, x_2) \in X} x_1^{u_1} x_2^{u_2} = 0 \]
- Else, the sum is unknown.
Using the division property in practice

- Prepare a set of plaintexts and evaluate its division property.
- **Propagate** the input texts and evaluate the division property of the output set after one round.
 - Use rules to propagate the property through the different cipher components (Sboxes, XOR, etc..)
- **Repeat the procedure** and compute the division property of the set of texts after several rounds.
- If after several rounds some exploitable information is found, then we get a **distinguisher**.
Unifying two classical attacks

Exploiting at the same time properties of saturation attacks and higher-order differential attacks

- **Saturation attacks.** Analyze the propagation of the following properties:
 - \(A\) (all): Each value appears the same number of times in the multiset.
 - \(B\) (balance): The XOR of all texts in the multiset is 0.
 - \(C\) (constant): The value is fixed to a constant for all texts in the multiset.
 - \(U\) (unknown): The multiset is indistinguishable from a random one.

- **Higher-order differential attacks.** Exploit the algebraic degree:
 - For every subspace \(V\) with \(\dim V > \deg F\)
 \[
 \bigoplus_{v \in V} F(x + v) = 0, \text{ for every } x \in \mathbb{F}_2^n.
 \]
Let S be a permutation of algebraic degree d. Let X be the input multiset and $Y = S(X)$ the output multiset.

- If X has A then Y has A.
- If X has B then Y has U.

- If X is composed of 2^{d+1} chosen plaintexts, then Y has B.

This last property is not exploited in classical saturation attacks!
Outline

1. Understanding D^n_k for some specific values of k

2. Propagation of the property through an Sbox

3. Todo’s distinguisher on PRESENT
Outline

1. Understanding D_{k}^{n} for some specific values of k

2. Propagation of the property through an Sbox

3. Todo's distinguisher on PRESENT
Some specific values of k

Question: What can be said about a multiset X that verifies a property D_k^n, for some value of k?

- The cases D_1^n, D_2^n, D_n^n, have been characterized.
 - [Todo 2015], [Sun et al. 2015]

- The cases D_k^n, for $k \neq \{1, 2, n\}$ had not been exploited before.
 - We provide some insight on these cases **here**.
The property D_1^n

Let X be a multiset of elements in \mathbb{F}_2^n.

X fulfills D_1^n if and only if its cardinality is even.

Indeed,

- X has the property D_1^n: For $u = (0, \ldots, 0)$: \(\bigoplus_{x \in X} x^u = 0 \)

 \[\iff \bigoplus_{x \in X} x_1^0 \cdots x_n^0 = \bigoplus_{x \in X} 1 = \#X \mod 2 = 0 \]

- The inverse can be easily deduced.
The property D_2^n

Let X be a multiset of elements in F_2^n.

X fulfills D_2^n if and only if its cardinality is even and it has the Balance property.

Balance property: For any i, $1 \leq i \leq n$ \(\bigoplus_{x \in X} x_i = 0 \).

Indeed, if X has the property D_2^n:

- \(\bigoplus_{x \in X} x_1^0 \ldots x_n^0 = 0 \Rightarrow X$ has even cardinality.
- For all u with $wt(u) = 1$:
 \(\bigoplus_{x \in X} x^u = \bigoplus_{x \in X} x_1^0 \ldots x_i^0 x_{i+1}^1 \ldots x_n^0 = \bigoplus_{x \in X} x_i = 0 \)
 \(\Rightarrow X$ has the Balance property.

The inverse is proven easily.
Reduced set of a multiset

Let \(X \) be a multiset of elements in \(\mathbf{F}_2^n \).

The corresponding reduced set \(\tilde{X} \) is the set composed of all elements in \(X \) having an odd multiplicity.

Example: If \(X = \{0x0, 0x3, 0x3, 0x3, 0x5, 0x7, 0x7, 0xB, 0xC\} \) then

\[
\tilde{X} = \{0x0, 0x3, 0x5, 0xB, 0xC\}.
\]

A multiset \(X \) fulfills \(D^n_k \) if and only if \(\tilde{X} \) fulfills \(D^n_k \).
The property \mathcal{D}_{n}^{n}

Let X be a multiset of elements in \mathbb{F}_{2}^{n}.

X fulfills \mathcal{D}_{n}^{n} if and only if its reduced set \tilde{X} is either empty or equal to \mathbb{F}_{2}^{n}.

This is proved for example in [Sun et al. 2015] in two ways.

- Direct proof by contradiction.
- By proving that for any k,

 if a multiset X has the property \mathcal{D}_{k}^{n}, then $\#X \geq 2^{k}$.
The property D_k^n

Proposition. Let X be a multiset of elements in F_2^n such that \tilde{X} is an (affine) subspace of dimension k. Then X satisfies D_k^n.

Let $u \in F_2^n$ be any element with $wt(u) < k$. Let

$$U = \{x \in F_2^n : x_i = 1 \quad \forall i \in \text{Supp}(u)\}$$

Then, for any $x \in F_2^n$,

$$x^u = 1 \text{ if and only if } x \in U.$$

Therefore,

$$\bigoplus_{x \in X} x^u = |X \cap U| \mod 2$$

Since X is an (affine) subspace of dimension k, $X \cap U$ is either empty or an (affine) subspace of dimension at least $k - wt(u) \geq 1$. Then, the size of $X \cap U$ is always even.
The property D^n_{n-1}

Let X be a multiset of elements in \mathbb{F}_2^n.

Proposition. X satisfies D^n_{n-1} if and only if \tilde{X} is an (affine) subspace of dimension $(n - 1)$.

Idea of proof: By induction.
Example [Todo, Eurocrypt 2015]

For the multiset of elements of \mathbb{F}_2^4

$$X = \{0x0, 0x3, 0x3, 0x3, 0x5, 0x6, 0x8, 0xB, 0xD, 0xE\},$$

the corresponding reduced set

$$\tilde{X} = \{0x0, 0x3, 0x5, 0x6, 0x8, 0xB, 0xD, 0xE\}$$

is a linear subspace of dimension 3 spanned by $\{0x3, 0x5, 0x8\}$.

So, it can be directly deduced (without computation) that

$$X$$ has the property D_3^4.
Outline

1. Understanding D^*_k for some specific values of k

2. Propagation of the property through an Sbox

3. Todo's distinguisher on PRESENT
Let S be a permutation of \mathbb{F}_2^n of algebraic degree d.

Let X be a multiset having the division property D_n^k.

Question: What is the division property of $Y = S(X)$?

- If $k = n$, then Y has the division property D_n^n.

Proposition (Todo):

Y has the division property $D_n^{n \lceil \frac{k}{d} \rceil}$.
Example - MISTY S_7

MISTY’s Sbox S_7 is a 7-bit Sbox of degree 3.

- The input set X has the property D^7_k.
- The output set Y has the property $D^7_{k'}$, with $k' = \lceil \frac{k}{3} \rceil$.

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>k'</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>
Proposition of the property through an Sbox

Proof Sketch

Let the input set X have the division property D_{k}^{n}. Then,

$$\bigoplus_{x \in X} x^{u} = 0, \text{ for all } u \in F_{2}^{n} \text{ with } wt(u) < k.$$

Goal: Evaluate for which $v \in F_{2}^{n}$, $\bigoplus_{x \in X} S(x)^{v}$ vanishes.

- If $\deg(S^{v}) < k$ then $\bigoplus_{x \in X} S(x)^{v} = 0$.
- If $\deg(S^{v}) \geq k$, $\bigoplus_{x \in X} S(x)^{v}$ is undetermined.

Obviously, $\deg(S^{v}) \leq wt(v) \times d$, so the sum becomes unknown if

$$wt(v) \times d \geq k.$$
An improvement idea

In the previous proof, the degree was bounded by

$$\deg(S^v) \leq wt(v) \times d$$

This bound is not tight!
The inverse permutation influences the degree

Let S be a permutation on \mathbb{F}_2^n.

Denote by $\delta_k(S)$ the max. degree of the product of k coordinates of S.

Theorem [B.–Canteaut 2013]. For any k and ℓ,

$$\delta_\ell(S') < n - k \text{ if and only if } \delta_k(S^{-1}) < n - \ell.$$
Getting a tighter result

Use the previous theorem to better estimate \(\deg(S^v) \):

\[
\deg(S^v) \leq \delta_{wt(v)}(S).
\]

Then,

\[
\delta_{wt(v)}(S) < k \text{ iff } \delta_{n-k}(S^{-1}) < n - wt(v).
\]

By re-writing the second inequality we get

\[
\delta_{wt(v)}(S) < k \text{ iff } wt(v) < n - \delta_{n-k}(S^{-1}).
\]

The quantity \(\bigoplus_{x \in X} (S^v)(x) \) becomes unknown when

\[
wt(v) \geq n - \delta_{n-k}(S^{-1}).
\]

So \(Y \) has the division property \(D_{n-\delta_{n-k}(S^{-1})}^n \).
Example - Back to MISTY S_7

MISTY’s inverse Sbox S_7^{-1} is a 7-bit Sbox of degree 3.

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta_k(S_7^{-1})$</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

- The input set X has the property D_k^7.
- The output set Y has the property $D_{k'}^7$, with
 - $k' = \lceil \frac{k}{3} \rceil$ (Todo’s estimation)
 - $k' = 7 - \delta_{7-k}(S_7^{-1})$ (our estimation)

For $k = 6$: $k' = 7 - \delta_{7-6}(S_7^{-1}) = 7 - 3 = 4$
Outline

1. Understanding D^n_k for some specific values of k

2. Propagation of the property through an Sbox

3. Todo’s distinguisher on PRESENT
PRESENT

64-bit block cipher with 80/128-bit key and 31 rounds.

- **Confusion**: Use of a 4-bit Sbox of degree 3.
Algebraic degree of PRESENT

Estimate the algebraic degree of PRESENT after several rounds:
Let R denote PRESENT’s round function.

- Trivial bound: $\deg(R^{r+1}) \leq 3 \cdot \deg(R^r)$
- Bound for SPN [B.—Canteaut—De Cannière 2011]

\[\deg(R^{r+1}) \leq 64 - \frac{64 - \deg(R^r)}{3} \]

<table>
<thead>
<tr>
<th>Rounds (r)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree</td>
<td>3</td>
<td>9</td>
<td>27</td>
<td>51</td>
<td>59</td>
<td>62</td>
<td>63</td>
</tr>
</tbody>
</table>
Distinguisher based on the algebraic degree

If after \(r \) rounds the degree is \(d \), then for any subspace \(V \) of dimension \(d + 1 \)

\[
\bigoplus_{v \in V} R^r(x + v) = 0, \text{ for every } x \in \mathbb{F}_2^n.
\]

→ Distinguisher with \(2^{r+1} \) plaintexts.

<table>
<thead>
<tr>
<th>Rounds ((r))</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log_2(#\text{plaintexts}))</td>
<td>28</td>
<td>52</td>
<td>60</td>
<td>63</td>
</tr>
</tbody>
</table>
Todo’s distinguishers on PRESENT

Equivalent representation of PRESENT’s state (16 4-bit words)
Todo’s distinguishers on PRESENT

Choose the number of required chosen plaintexts, say 2^D.

Example: $D = 12$

- ■ words take all possible values.
- □ words are fixed to a constant value for all texts.
Todo’s distinguishers on PRESENT

Choose the number of required \textit{chosen plaintexts}, say \(2^D\).

Example: \(D = 52\)

- Words take \textit{all possible values}.
- Words are fixed to a \textit{constant} value for all texts.
Todo’s distinguishers on PRESENT

Algorithm for computing the propagation of the division property.

- **Confusion** part: Compute the propagation for each Sbox. Only the degree is taken into account.
- **Diffusion** layer: The particular description of the linear layer is not exploited.

<table>
<thead>
<tr>
<th>Degree</th>
<th>$r = 3$</th>
<th>$r = 4$</th>
<th>$r = 5$</th>
<th>$r = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division property</td>
<td>12</td>
<td>28</td>
<td>52</td>
<td>60</td>
</tr>
<tr>
<td>$\log_2(#\text{plaintexts})$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: $\log_2(\#\text{plaintexts})$
How can these results be explained

Combination of saturation and higher-order differential attack

- Saturate some words of the first round.
How can these results be explained

- **Saturate** some words of the first round.
- After the confusion layer, the **all** and **constant** properties remain unchanged.
- Start from a subspace after the non-linear layer and apply the bound on the degree.

![Diagram](image)

- **Gain of one round** compared to the **higher-order differential distinguisher**.
- Prepend a **one-round saturation property** to the higher-order differential distinguisher.
New distinguishers on PRESENT (Work in progress)

We can obtain distinguishers reaching a higher number of rounds for PRESENT for the same data complexity.

Exploit the division property, but take into account
- Sbox properties
- linear layer properties

Example: With 2^{12} chosen plaintexts, distinguisher on 5 rounds (2 more rounds than Todo’s generic method).
Conclusion

- New interesting property proposed recently by Todo.
- This property is far from being fully understood and many aspects of the division property are left to be explored.
- Better understand how the property is propagated through the linear and non-linear components.
Conclusion

- New interesting property proposed recently by Todo.
- This property is far from being fully understood and many aspects of the division property are left to be explored.
- Better understand how the property is propagated through the linear and non-linear components.

Thanks for your attention!