Another view of the division property

Christina Boura and Anne Canteaut

CRYPTO 2016, Santa Barbara August 17, 2016

Motivation

Let E_k be a block cipher with block size n. Choose an input set $X \subseteq \mathbf{F}_2^n$.

Goal: Find a distinguishing property for $\{E_k(x), x \in X\}$ valid for all k.

- At Eurocrypt 2015, Yosuke Todo introduced the division property.
- Generalization of integral and higher-order differential distinguishers.
- Construction of more powerful generic distinguishers for both SPN and Feistel constructions.
- Use of this new property for breaking full MISTY-1 (best paper award at CRYPTO 2015).

Monomials of n variables

For
$$x = (x_1, \dots, x_n)$$
 and $u = (u_1, \dots, u_n)$ in \mathbf{F}_2^n

$$x^u = \prod_{i=1}^n x_i^{u_i}$$

Example: u = (1010)

$$x^{u} = x_{1}^{1}x_{2}^{0}x_{2}^{1}x_{1}^{0} = x_{4}x_{2}$$

If x = (1100), then $1^1 1^0 0^1 0^0 = 0$.

Evaluation of a monomial:

$$x^u = 1$$
 if and only if $u \leq x$,

where $u \leq x \Leftrightarrow u_i \leq x_i$ for $i = 1, \ldots, n$.

Division property [Todo 2015]

Let X be a set of elements in \mathbf{F}_2^n .

For $0 \le k \le n$, we say that X has the division property \mathcal{D}_k^n if

$$\bigoplus_{x \in X} x^{\mathbf{u}} = 0,$$

for all $\mathbf{u} \in \mathbf{F}_2^n$ such that $wt(\mathbf{u}) < k$.

- If k = 2 then X has the balanced property (B)
- If k = n then X has the saturated property (A)
- Novelty: Introduction and propagation of the intermediate properties \mathcal{D}^n_k for $3 \leq k \leq n-1$.

Overview

Parity set of a set

- Propagation of a parity set through the block cipher
- 3 Application to PRESENT

Outline

- Parity set of a set
- 2 Propagation of a parity set through the block cipher
- 3 Application to PRESENT

Parity set of a set

Let X be a set of elements in \mathbb{F}_2^n . Then, the set

$$\mathcal{U}(X) = \{ u \in \mathbf{F}_2^n : \bigoplus_{x \in X} x^u = 1 \},$$

is called the parity set of X.

Correspondence between a set and its parity-set

Incidence vector of a set $X \subseteq \mathbf{F}_2^n$:

 v_X : binary vector of length 2^n having a 1 at all positions $x \in X$

Example (n = 3). Let $X = \{1, 4, 7\}$. Then,

$$v_X = (1, 0, 0, 1, 0, 0, 1, 0)$$

Let G be the $2^n \times 2^n$ binary matrix with coefficients

$$G_{u,a} = a^u, \ a, u \in \mathbf{F}_2^n$$

Equivalently, $G_{u,a} = 1$ if and only if $u \leq a$.

Proposition:

$$v_{\mathcal{U}(X)} = G \cdot v_X$$

$$X = \{1, 3, 4\}$$

$$X = \{1, 3, 4\}$$

$$\mathcal{U}(X) = \{0, 2, 3, 4\}.$$

Unicity of the parity set

Definition: The Reed-Muller code of length 2^n and order r, RM(r,n), is the set of all $(f(x), x \in \mathbf{F}_2^n)$ with $\deg f \leq r$.

 \Rightarrow G: generator matrix of RM(n,n)

Consequences : G has full rank and $G^{-1} = G$.

Theorem. For any $U \subseteq \mathbf{F}_2^n$, there exists a unique $X \subseteq \mathbf{F}_2^n$, such that

$$U = \mathcal{U}(X)$$
.

Link with the division property

Proposition. $X \subseteq \mathbf{F}_2^n$ fulfills the division property D_k^n , if

$$\mathcal{U}(X) \subseteq \{u \in \mathbf{F}_2^n : wt(u) \ge k\}.$$

 $\Rightarrow \mathcal{D}_k^n$ is a lower bound on the weight of all elements in $\mathcal{U}(X)$.

The rows of G defined by the exponents u with wt(u) < k form a generator matrix of the Reed-Muller code of order (k-1).

Corollary. $X \subseteq \mathbf{F}_2^n$ fulfills the division property D_k^n if and only if its incidence vector belongs to $RM(k-1,n)^{\perp}=RM(n-k,n)$.

Some direct consequences

Corollary. [Sun et al. 15] If X fulfills \mathcal{D}_k^n , then $|X| \geq 2^k$. Equality holds if and only if X is an affine subspace of dimension k.

Some specific cases:

- X fulfills \mathcal{D}_1^n : |X| is even.
- X fulfills \mathcal{D}_2^n : $\bigoplus_{x \in X} x = 0$ [BALANCED]
- X fulfills \mathcal{D}_n^n : $\mathcal{U}(X) = \{1 \dots 1\} \Leftrightarrow X = \mathbf{F}_2^n$ [ALL]
- X fulfills $\mathcal{D}_{n-1}^n: v_X \in RM(1,n)$ or equivalently X is an (affine) hyperplane.

Outline

Parity set of a set

Propagation of a parity set through the block cipher

Application to PRESENT

Propagation through key addition

Propagate the parity set after the XOR with an unknown key k.

$$(x \oplus k)^v = \bigoplus_{u \prec v} x^u k^{v \oplus u}$$

Then,

$$\mathcal{U}(\mathsf{Add}_K(X))\subseteq\bigcup_{u\in\mathcal{U}(X)}\{v\in\mathbf{F}_2^n:v\succeq u\}$$

Example:
$$n=4$$
, $\mathcal{U}(X)=\{3,c\}$. Then,
$$\mathcal{U}(\mathsf{Add}_K(X)) \subseteq \{3,7,b,c,d,e,f\}.$$

Propagating the parity set through an Sbox

By definition,

$$v \in \mathcal{U}(S(X)) \Leftrightarrow \bigoplus_{x \in X} S^v(x) = 1$$

 \Rightarrow the ANF of $S^v(x)$ contains some x^u with $u \in \mathcal{U}(X)$

Proposition. Let $V_S(u) = \{v \in \mathbf{F}_2^n : S^v(x) \text{ contains } x^u\}$ Then,

$$\mathcal{U}(S(X)) \subseteq \bigcup_{u \in \mathcal{U}(X)} V_S(u)$$

$V_S(u)$ for the PRESENT Sbox

	0	1	2	4	8	3	5	9	6	a	С	7	b	d	е	f	
0	х			Х	х						Х						
1		х			х		х				x						
2			X		х				Х		х						
4		х		X				X			х						
8		x	X	Х	x	х					x						
3				х		х	х	х	х	х	х		х				
5							х	Х			х						
9				Х		х	Х		х	Х					х		
6		х			х			Х	х	Х	x						
a			X	X			Х	X		X		х	X	X	х	Х	
С			X			х		X			x						
7			Х		х	х		Х	х				Х	Х			
р			Х	Х	х	Х			Х	Х	х	Х		Х		х	
d			Х	Х	х			Х		Х		х			х		
е							Х					Х	X	Х	X	х	
f																х	6

Link with the ANF

	0	1	2	4	8
0	х			х	
1		х			х
2			х		х
4		х		х	
8		х	х	х	х
3				х	
5					
9				х	
6		х			х
a			х	х	
С			х		
7			х		х
b			х	х	х
d			х	х	х
е					
f					

$$S_{1} = x_{1} + x_{3} + x_{4} + x_{2}x_{3}$$

$$S_{2} = x_{2} + x_{4} + x_{2}x_{4} + x_{3}x_{4} + x_{1}x_{2}x_{3}$$

$$+ x_{1}x_{2}x_{4} + x_{1}x_{3}x_{4}$$

$$S_{3} = 1 + x_{3} + x_{4} + x_{1}x_{2} + x_{1}x_{4} + x_{2}x_{4}$$

$$+ x_{1}x_{2}x_{4} + x_{1}x_{3}x_{4}$$

$$S_{4} = 1 + x_{1} + x_{2} + x_{4} + x_{2}x_{3} + x_{1}x_{2}x_{3}$$

$$+ x_{1}x_{2}x_{4} + x_{1}x_{3}x_{4}.$$

Link with the inverse Sbox

Theorem. Let $S^*: x \mapsto \overline{S^{-1}(x)}$.

Then, $S(x)^v$ contains x^u if and only if $S^*(x)^{\overline{u}}$ contains x^v .

$$\Rightarrow V_S(u) = \{v : [S^*(x)]^{\overline{u}} \text{ contains } x^{\overline{v}}\}$$

Example: The 1st coordinate of S^* is:

$$1 + x_1 + x_2 + x_3 + x_4 + x_2 x_4$$

$$\Rightarrow V_S(1110) = \{0101, 0111, 1011, 1101, 1110, 1111\}$$
$$= \{5, 7, b, d, e, f\}.$$

	0	1	2	4	8	3	5	9	6	a	С	7	b	d	е	f
е							X					x	X	X	X	x

Outline

Parity set of a set

- 2 Propagation of a parity set through the block cipher
- 3 Application to PRESENT

PRESENT

[Bogdanov - Knudsen - Le - Paar - Poschmann - Robshaw - Seurin - Vikkelsoe 2007]

64-bit block cipher with 80/128-bit key and 31 rounds.

• Confusion : Use of a 4-bit Sbox of degree 3.

4 rounds by exploiting the linear layer

$$\mathcal{U}(X) \subseteq \{u : u \succeq \texttt{000000000000fff0}\}$$

- Invariant under the 1st Sbox layer.
- After the 1st linear layer:

$$\mathcal{U}(X) \subseteq \{u : u \succeq \mathtt{000e000e000e000e}\} \to \mathtt{4} \text{ active superboxes}.$$

- After the 3rd Sbox layer: $\mathcal{U} \subseteq \{u : wt(u) \ge 4\}$.
- After the 3rd linear layer:

$$\mathcal{U} \subseteq \{u \text{ with } \geq 2 \text{ active nibbles}\} \cup \{0x00...0f,...,0xf0...0\}.$$

• Invariant under the 4th Sbox layer

$$\Rightarrow \mathcal{U}(E_K(X)) \subseteq \{v : wt(v) \ge 2\}$$

Does not work on 5 rounds for some Sboxes

A possible propagation

Input	-	-	-	-	-	-	-	-	-	-	-	-	f	f	f	-
1st S-layer	-	-	-	-	-	-	-	-	-	-	-	-	f	f	f	1
1st P-layer	-	-	-	е	-	-	-	е	-	-	-	е	-	-	-	е
2nd S-layer	-	-	-	2	-	-	-	1	-	-	-	1	-	-	-	1
2nd P-layer	-	-	-	-	-	-	-	-	1	-	-	-	-	1	1	1
3rd S-layer	-	-	-	-	-	-	-	-	1	-	-	-	-	1	1	1
3rd P-layer	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8	7
4th S-layer	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	8
4th P-layer	-	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-
5th S-layer	_	_	_	1	-	_	_	_	-	_	_	_	-	_	_	ı

Does not work on 5 rounds for some Sboxes

A possible propagation

Input	-	-	-	-	-	-	-	-	ı	-	-	-	f	f	f	-
1st S-layer	-	-	-	-	-	-	-	-	-	-	-	-	f	f	f	-
1st P-layer	-	-	-	е	-	-	-	е	-	-	-	е	-	-	-	е
2nd S-layer	-	-	-	2	-	-	-	1	-	-	-	1	-	-	-	1
2nd P-layer	-	-	-	-	-	-	-	-	1	-	-	-	-	1	1	1
3rd S-layer	-	-	-	-	-	-	-	-	1	-	-	-	-	1	1	1
3rd P-layer	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8	7
4th S-layer	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	8
4th P-layer	-	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-
5th S-layer	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-

 \bullet Feasible if the Sbox makes the transitions $e \to 1$ and $e \to 2$ possible.

5-round distinguisher

	0	1	2	4	8	3	5	9	6	a	С	7	b	d	е	f
0	х			х	х						х					
1		х			x		х				х					
2			x		x				x		x					
4		х		х				х			х					
8		х	Х	Х	x	х					х					
3				х		х	х	х	Х	х	Х		Х			
5							х	х			х					
9				х		х	х		Х	х					х	
6		х			x			х	х	х	х					
a			X	х			х	х		х		х	x	X	x	х
С			X			х		Х			x					
7			х		x	х		х	Х				Х	Х		
b			Х	Х	x	х			х	Х	х	х		Х		х
d			Х	х	x			х		х		х			х	
e							X					X	X	X	X	X
f																Х

5-round distinguisher

	0	1	2	4	8	3	5	9	6	a	С	7	b	d	е	f
0	X			X	X						X					
1		X			X		X				X					
2			X		X				X		X					
4		X		X				X			X					
8		X	X	X	X	X					X					
3				X		X	X	X	X	X	X		X			
5							X	X			X					
9				X		X	X		X	X					X	
6		X			X			X	X	X	X					
а			X	X			X	X		X		X	X	X	X	X
С			X			X		X			X					
7			X		X	X		X	X				X	X		
Ъ			X	X	X	X			X	X	X	X		X		X
d			X	X	X			X		X		X			X	
е							X					X	X	X	X	X
f																X

5-round distinguisher

	0	1	2	4	8	3	5	9	6	a	С	7	b	d	е	f
е							X					X	X	X	X	X

- $V_S(e)$ contains a few elements only.
- The transactions $e \rightarrow 1$ and $e \rightarrow 2$ are **not possible**.
- We've checked that no vector of Hamming weight 1 is in the output parity set after 5 rounds.

The output set has the balanced property after 5 rounds.

6-round distinguisher

	0	1	2	4	8	3	5	9	6	а	С	7	Ъ	d	е	f
0	X			X	X						X					
1		X			X		X				X					
2			X		X				X		X					
4		X		X				X			X					
8		X	X	X	X	X					X					
3				X		X	X	X	X	X	X		X			
5							X	X			X					
9				X		X	X		X	X					X	
6		X			X			X	X	X	X					
a			X	X			X	X		X		X	X	X	X	X
С			X			X		X			X					
7			X		X	X		X	X				X	X		
b			X	X	X	X			X	X	X	X		X		X
d			X	X	X			X		X		X			X	
е							X					X	X	X	X	X
f																X.

24 / 25

6-round distinguisher

	0	1
0	X	
1		X
1 2 4		
4		X
8		X
3 5 9		
5		
9		
6		X
a		
С		
7		
b		
d		
е		
f		

- After 6 rounds, the output parity set contains elements with Hamming weight 1.
- But, column corresponding to 1 is very sparse: most of the transitions $u \to 1$ are not possible.
- Only the nibble values 2, 4 and 8 are possible $\to 16$ values don't belong to the output parity set.
- Weaker distinguisher for 6 rounds

Conclusion and open problems

- The notion of parity set permits us to capture more information compared to the division property.
- Computing the propagation of the parity set is more expensive than computing the propagation of the division property. How to make the propagation more time and memory efficient?
- Use parity sets for identifying classes of weak keys.

Conclusion and open problems

- The notion of parity set permits us to capture more information compared to the division property.
- Computing the propagation of the parity set is more expensive than computing the propagation of the division property. How to make the propagation more time and memory efficient?
- Use parity sets for identifying classes of weak keys.

Thanks for your attention!